DeepSeek 最新开源!!!

读者福利:关注公众号【大模型应用开发LLM】可获取入门大模型学习资料包一份~

DeepSeek 在 Hugging Face 平台悄然发布了全球最大的开源数学推理模型——DeepSeek-Prover-V2-671B。

这款拥有 6710 亿参数的超级模型,以突破性的架构设计和开源战略,为数学研究、工业验证和教育领域带来全新可能。

图片

01

技术架构:专为数学证明而生

① 混合专家(MoE)架构升级

基 于DeepSeek-V3 框架,模型采用 MoE 设计,包含 61 层 Transformer 和 7168 维隐藏层,通过动态分配专家模块,在推理时仅激活约 370 亿参数,既保证计算效率又降低资源消耗。MoE 模式特别针对数学证明场景优化,每个专家模块专注于不同数学分支的逻辑推理。

图片img

② 超长上下文与注意力革新

模型支持 163,840 tokens 的超长上下文窗口,可完整处理多步骤数学证明的长逻辑链。结合多头潜注意力(MLA)技术,压缩键值缓存(KV Cache),使推理内存占用减少 18%,在单块 H800 GPU 上实现 580TFLOPS 的吞吐量。

③ 量化与部署优化

引入 FP8/INT4 量化技术,显存需求从 FP16 的 1.3TB 降至 INT8的670GB,支持消费级显卡(如4块A100)部署。采用高效的 safetensors 文件格式,加载速度提升 3.2 倍,并支持多精度混合计算。

02

性能突破:超越传统模型与人类专家

① 基准测试表现

在高中数学测试集 miniF2F 中,模型准确率从上一代的 63.5% 跃升至 ≥75%;大学数学证明集 ProofNet 准确率达 40%,较前代提升 58%。对比 GPT-4 Turbo,其形式化证明任务准确率高达 89.7%(GPT-4 为 58.6%)。

② 国际奥数级挑战

模型首次支持国际数学奥林匹克(IMO)难度问题,生成 12 步复杂证明框架仅需 3 秒,准确率较前代提升 47%。例如在黎曼猜想局部证明中,模型可生成符合数学期刊审稿标准的推导步骤。

③ 效率与成本平衡

通过 SGLang 推理引擎优化,单次推理成本低于 5 美元,云端部署可支持 18 次证明/分钟的吞吐量。

03

应用场景:从科研到工业的全域革新

① 学术研究加速器

协助数学家完成定理形式化、猜想探索,甚至重构历史文献(如欧几里得《几何原本》缺失内容)。结合SymPy符号计算引擎,可处理微分方程、矩阵运算等复杂问题。

② 工业验证新范式

在芯片设计验证、密码学安全证明等场景中,通过Lean4/Coq集成实现严格数学检验,避免传统测试方法遗漏的逻辑漏洞。自动驾驶领域,模型能在0.3秒内求解路径规划微分方程,避障成功率提升41%。

③ 教育工具智能化

生成交互式三维证明模型(如黎曼猜想复变函数可视化),并支持可验证步骤的教学系统,帮助学生理解抽象概念。

04

开源生态:普惠 AI 的里程碑

DeepSeek 延续开源战略,模型已在 Hugging Face 和 ModelScope 社区开放下载,采用商用许可。开发者可通过以下方式部署:

Hugging Face:https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
ModelScope:https://www.modelscope.cn/models/AI-ModelScope/DeepSeek-Prover-V2-671B

开源生态降低了学术与工业界的研究门槛,推动全球开发者共建数学推理工具链。

DeepSeek-Prover-V2-671B 不仅是技术突破,更是 AI 普惠化的典范。其开源特性与垂直领域深耕,为 AGI 发展提供了新范式。正如开发者社区所言:“这可能是首个能‘通过数学期刊盲审’的 AI 模型。”

化的典范。其开源特性与垂直领域深耕,为 AGI 发展提供了新范式。正如开发者社区所言:“这可能是首个能‘通过数学期刊盲审’的 AI 模型。”

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值