是不是经常听到这样的段子,一个程序员,在咖啡馆里,花了两个小时,就写了一款应用,上线后,爆火,开始躺赚。 以前可能将信将疑,但在2025年,借助AI,这正是AI工程师的日常。
AI工程师,正在成为科技领域最炙手可热的职业之一。 年薪动辄五六十万,甚至上百万;开发的产品无需大量人力,却能创造令人咋舌的利润;过去需要数月完成的任务,现在几分钟搞定。 这一切,都得益于AI和语言模型的飞速发展。
但与此同时,AI工程师面临的挑战也不容小觑。 AI模型的非确定性特性,以及“英语就是编程语言”的趋势,让许多人感到困惑。 行业仍在摸索最佳实践,而技术更新的速度让人应接不暇。 越山认为,这正是机会所在。 掌握关键技能的人,将在未来几年内站上风口,成为这一领域的佼佼者。
今天,越山为你带来一份详细的6步指南,帮助你从零开始,成为一名成功的AI工程师。
为什么选择成为AI工程师?
在正式进入技能部分之前,我们先来聊聊为什么AI工程师是一个值得追求的职业。
- 高薪与高需求
据行业数据显示,AI工程师的年薪可以高达43.5万美元。随着各行各业越来越依赖AI技术,对这类人才的需求只会持续增长。 - 低门槛的创造力
过去,开发一个复杂的应用可能需要一个团队,几个月甚至几年的时间。而现在,AI工具的普及让个人开发者也能实现“单枪匹马创造奇迹”。在AI时代成为超级个体绝对值得。 - 技术的黄金窗口期
当前,AI正处于快速发展的阶段,但行业内的标准和最佳实践尚未完全成熟。越山认为,这意味着机会:早一步掌握技能,就能早一步占据优势。比如AI编程正在迎来巨变,也必奖在2025年改变程序员的工作模式,改变软件产品的创业形态。
如果你对这些前景感到心动,那么接下来这6项技能,就是你需要掌握的核心能力。
成为AI工程师的6步技能指南
*1. 掌握AI模型的使用*
成为AI工程师的第一步,是熟悉和使用主流的AI模型。 当前,国外最受欢迎的模型来自以下四家公司:OpenAI、Anthropic、Meta和Google。 每种模型都有自己的“个性”:
- OpenAI:擅长分析和推理。
- Anthropic:在写作和内容生成方面表现优异。
- Meta Gemini:像侦探一样,善于从复杂数据中找到关键点。
- Google:在多模态(文本、图像、视频等)处理上表现突出。
国内最受欢迎的模型包括:
- DeepSeek: 写代码,苣便宜的
- 智谱GLM: 多模态
- 阿里千问:开源的Qwen系列好用
- 海螺可灵:AI视频全球领先
除了了解这些模型的特点,你还需要熟悉它们的API(应用程序接口)。 比如,OpenAI的Chat Completions接口,可以帮助你快速调用模型生成内容。 此外,还要了解不同模型类型,如GPT-4、Whisper等,以及如何处理流式数据、批量数据和提示缓存。
*2. 学习提示工程(Prompt Engineering)*
提示工程是AI工程师的核心技能之一。 简单来说,它是通过设计有效的提示(Prompt),让语言模型输出你想要的结果。 虽然有人认为这是“一阵风”,但越山坚信,提示工程在未来几年内仍将是不可或缺的能力。
以下是几种常用的提示技巧:
- 链式思维(Chain of Thought):让模型先解释思路,再给出答案。这种方式能显著提高复杂任务的准确性。
- 示例驱动(Example-based Prompting):在提示中加入具体例子,帮助模型更好地理解你的需求。
- 结构化输出:比如要求模型输出JSON格式的数据,便于后续处理。
提示工程不仅仅是技术活,更是一门“艺术”。
*3. 掌握上下文检索(Context Retrieval)*
AI模型的训练数据虽然强大,但它无法实时更新,也无法直接访问用户的个性化信息。 这时,上下文检索(Context Retrieval)就显得尤为重要。
上下文检索的核心思路是:通过语义搜索,找到与用户查询最相关的文档或信息,并将这些内容加入到提示中,从而生成更精准的结果。 这一过程被称为“检索增强生成”(Retrieval-Augmented Generation,简称RAG)。
常见的实现方式包括:
- 嵌入技术(Embeddings):将文本转化为向量,以便计算相似性。
- 语义搜索(Semantic Search):根据词义而非关键词匹配,提高搜索的相关性。
*4. 学会AI系统的编排(Orchestration)*
AI工程师不仅仅是调用单个模型,还需要将多个模型和工具整合在一起,形成一个协同工作的系统。 这就是所谓的“编排”。
最基础的编排方式是“链式调用”(Chains),也叫工作流,即按顺序调用不同的模型。 而更高级的形式则是“智能体”(Agents),即让模型具备一定的决策能力,能够根据用户输入动态调整操作流程。
智能体技术的潜力巨大,许多公司愿意为擅长此技术的工程师支付高薪。 当前,主流的智能体框架包括LangChain、Haystack等。而扣子,Dify则是更友好的低代码智能体上手平台。
*5. 强化评估与可观察性(Evaluations & Observability)*
AI应用的输出往往是非确定性的,这让评估变得更加复杂。 如果没有良好的评估体系,你很难判断模型的表现是否达标。
评估的核心是“Evals”,相当于传统编程中的单元测试。 它可以帮助你验证模型输出的质量。 而可观察性(Observability)则包括:
- 追踪(Tracing):记录每次模型调用的详细信息,方便调试。
- 成本管理:监控模型调用的费用,避免“账单爆炸”。
*6. 拥抱AI时代的新思维*
最后,成为AI工程师不仅需要技术,更需要一种全新的思维方式。 这包括:
- 快速试错:有想法就立即动手实现,哪怕产品还不完美,也要尽快发布,获取用户反馈。
- 理解新工具栈:比如用V0开发前端,或者尝试AI驱动的IDE(如Cursor)。
- 关注可扩展性:优化性能、降低成本、减少延迟,是打造成功AI应用的关键。
成为持续构建者(Builder)。
说在最后
AI工程师的未来无疑充满机遇,但也需要不断学习和适应。 越山希望,这份6步指南能帮你明确方向,少走弯路。
如果你已经跃跃欲试,可以从一个小项目开始,尝试将上述技能应用到实际开发中。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
**或扫描下方二维码领取 **