K近邻算法

knn(k_nearest neighbor)是一种基本的分类与回归方法。KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别。而KNN做回归时,一般是选择平均法,即最近的K个样本的样本输出的平均值作为回归预测值。由于两者区别不大,虽然本文主要是讲解KNN的分类方法,

knn算法的三要素是:k值的选择,距离度量,分类决策规则

k近邻算法的流程:

(1)根据给定的距离度量,在训练数据集中找出与目标样本x最邻近的k个点,涵盖这k个点的邻域称为Nk(x)。

   a .     计算测试数据x与各个训练数据之间的距离,一般用欧式距离;

                   D(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}

               也有选择Manhattan(曼哈顿距离)作为距离度量规则的:

                                                 d(x, y)=\sqrt{\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|}

   b.      按照距离的递增关系进行排序,选取距离最小的K个点;

 

(2)确定前K个点所在类别的出现频率,返回前K个点中出现频率最高的类别作为测试数据的预测分类。

     如下所示,为多数表决的公式:

                                   \mathrm{y}=\operatorname{argmax} \sum_{x_{i} \in N_{k(x)}} I\left(y_{i}, c_{j}\right), i=1,2, \ldots, N ; j=1,2, \ldots, K

                                 I 为指示函数(意思是:即当yi = cj时 I等于1,否则I等于0),j为k的个数大小。

 

关于KD树搜索:knn的普通方式会比较慢,用KD树会加快速度

KD树的三个步骤:第一步是建树,第二部是搜索最近邻,最后一步是预测

第一步建树:

比如我们有二维样本6个,{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构建kd树的具体步骤为:

    1)找到划分的特征。6个数据点在x,y维度上的数据方差分别为6.97,5.37,所以在x轴上方差更大,用第1维特征建树。

    2)确定划分点(7,2)。根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以划分点的数据是(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:划分点维度的直线x=7;

    3)确定左子空间和右子空间。 分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)}。

    4)用同样的办法划分左子树的节点{(2,3),(5,4),(4,7)}和右子树的节点{(9,6),(8,1)}。最终得到KD树。

 

    最后得到的KD树如下

                                                                          :

 

第二步是搜索最近邻:

 当我们生成KD树以后,就可以去预测测试集里面的样本目标点了。对于一个目标点,我们首先在KD树里面找到包含目标点的叶子节点。以目标点为圆心,以目标点到叶子节点样本实例的距离为半径,得到一个超球体,最近邻的点一定在这个超球体内部。然后返回叶子节点的父节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不相交那就简单了,我们直接返回父节点的父节点,在另一个子树继续搜索最近邻。当回溯到根节点时,算法结束,此时保存的最近邻节点就是最终的最近邻。

    从上面的描述可以看出,KD树划分后可以大大减少无效的最近邻搜索,很多样本点由于所在的超矩形体和超球体不相交,根本不需要计算距离。大大节省了计算时间。

    我们用3.1建立的KD树,来看对点(2,4.5)找最近邻的过程。

    先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,但 (4,7)与目标查找点的距离为3.202,而(5,4)与查找点之间的距离为3.041,所以(5,4)为查询点的最近点; 以(2,4.5)为圆心,以3.041为半径作圆,如下图所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找,也就是将(2,3)节点加入搜索路径中得<(7,2),(2,3)>;于是接着搜索至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5;回溯查找至(5,4),直到最后回溯到根结点(7,2)的时候,以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如下图所示。至此,搜索路径回溯完,返回最近邻点(2,3),最近距离1.5。

    对应的图如下:

                                 

3.3 KD树预测 

    有了KD树搜索最近邻的办法,KD树的预测就很简单了,在KD树搜索最近邻的基础上,我们选择到了第一个最近邻样本,就把它置为已选。在第二轮中,我们忽略置为已选的样本,重新选择最近邻,这样跑k次,就得到了目标的K个最近邻,然后根据多数表决法,如果是KNN分类,预测为K个最近邻里面有最多类别数的类别。如果是KNN回归,用K个最近邻样本输出的平均值作为回归预测值。

 

 

Python实现(普通的方法):

#!/usr/bin/python
# coding=utf-8
#########################################
# kNN: k Nearest Neighbors

#  输入:      newInput:  (1xN)的待分类向量
#             dataSet:   (NxM)的训练数据集
#             labels:     训练数据集的类别标签向量
#             k:         近邻数

# 输出:     可能性最大的分类标签
#########################################

from numpy import *
import operator

# 创建一个数据集,包含2个类别共4个样本
def createDataSet():
    # 生成一个矩阵,每行表示一个样本
    group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
    # 4个样本分别所属的类别
    labels = ['A', 'A', 'B', 'B']
    return group, labels

# KNN分类算法函数定义
def kNNClassify(newInput, dataSet, labels, k):
    numSamples = dataSet.shape[0]   # shape[0]表示行数

    # # step 1: 计算距离[
    # 假如:
    # Newinput:[1,0,2]
    # Dataset:
    # [1,0,1]
    # [2,1,3]
    # [1,0,2]
    # 计算过程即为:
    # 1、求差
    # [1,0,1]       [1,0,2]
    # [2,1,3]   --   [1,0,2]
    # [1,0,2]       [1,0,2]
    # =
    # [0,0,-1]
    # [1,1,1]
    # [0,0,-1]
    # 2、对差值平方
    # [0,0,1]
    # [1,1,1]
    # [0,0,1]
    # 3、将平方后的差值累加
    # [1]
    # [3]
    # [1]
    # 4、将上一步骤的值求开方,即得距离
    # [1]
    # [1.73]
    # [1]
    #
    # ]
    # tile(A, reps): 构造一个矩阵,通过A重复reps次得到
    # the following copy numSamples rows for dataSet
    diff = tile(newInput, (numSamples, 1)) - dataSet  # 按元素求差值
    squaredDiff = diff ** 2  # 将差值平方
    squaredDist = sum(squaredDiff, axis = 1)   # 按行累加
    distance = squaredDist ** 0.5  # 将差值平方和求开方,即得距离

    # # step 2: 对距离排序
    # argsort() 返回排序后的索引值
    sortedDistIndices = argsort(distance)
    classCount = {} # define a dictionary (can be append element)
    for i in xrange(k):
        # # step 3: 选择k个最近邻
        voteLabel = labels[sortedDistIndices[i]]

        # # step 4: 计算k个最近邻中各类别出现的次数
        # when the key voteLabel is not in dictionary classCount, get()
        # will return 0
        classCount[voteLabel] = classCount.get(voteLabel, 0) + 1

    # # step 5: 返回出现次数最多的类别标签
    maxCount = 0
    for key, value in classCount.items():
        if value > maxCount:
            maxCount = value
            maxIndex = key

    return maxIndex

关于测试:

#!/usr/bin/python
# coding=utf-8
import KNN
from numpy import *
# 生成数据集和类别标签
dataSet, labels = KNN.createDataSet()
# 定义一个未知类别的数据
testX = array([1.2, 1.0])
k = 3
# 调用分类函数对未知数据分类
outputLabel = KNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel

testX = array([0.1, 0.3])
outputLabel = KNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel

代码转载自:https://www.cnblogs.com/ahu-lichang/p/7151007.html

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值