数据集介绍
该数据集主要包含自行车、电动车和摩托车,标签都是yolo格式,是经过本人精心挑选及筛选的。博客上也有很多其它数据集资源,但经本人下载后有很多图片的标签有误,甚至压根就不是人工标注的(估计是拿模型直接检测出来的),这个严重影响模型的精度。
数据集图片总数为12811,标签文件名与图片名一一对应,但是有的标签文件是多余的,不对应图片,训练的时候直接根据图片读标签即可。
标签格式:(类别 id 归一化后的x,y,w,h),其中id均为-1,因为我用这个数据集训练的跟踪模型,所以会有id信息。如果只想训练检测模型,对标签用代码处理以下即可。
个别图片展示
标签转换
原始标签格式,这里将摩托车、自行车、三轮车全部归为一类。
为了方便训练非机动车检测模型,在这里给出转换脚本,将所有标签里-1那列去掉。
import numpy as np
import os
# 标签路径 最好不要包含中文
root = r'C:\Users\admin\Desktop\Data_motorcycle\labels_with_ids'
# 写入路径
save_path = r'C:\Users\admin\Desktop\Data_motorcycle\labels'
label_path = os.listdir(root)
for path in label_path:
name = os.path.join(root, path)
txt = np.loadtxt(name, delimiter='\n', dtype=str)
if txt.size == 1:
txt = str(txt).split(' ')
s = '0 {} {} {} {}\n'.format(txt[2], txt[3], txt[4], txt[5])
with open(os.path.join(save_path, path), 'w') as f:
f.write(s)
else:
for i in txt:
i = i.split(' ')
s = '0 {} {} {} {}\n'.format(i[2], i[3], i[4], i[5])
with open(os.path.join(save_path, path), 'a') as f:
f.write(s)
测试效果
资源路径
如果需要购买,可点击: