给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
思路:完全背包问题
动规五部曲
1、dp[j]数组的下标及其定义:背包容量为j的背包最多有dp[j]种装法;
2、递推关系式:(求装满背包的方法)dp[j]+=dp[j-coins[i]];
3、dp数组的初始化:dp[0]=1,其他均为0;
4、遍历顺序:先物品,再背包;
纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
如果先背包,再物品的话:此时dp[j]里算出来的就是排列数!
5、举例验证dp数组。
class Solution {
public:
int change(int amount, vector<int>& coins) {
//初始化dp数组
vector<int> dp(amount+1,0);
dp[0]=1;
//遍历顺序
for(int i=0;i<coins.size();i++)
{
for(int j=coins[i];j<=amount;j++)
{
//求装满背包的方式
dp[j]+=dp[j-coins[i]];
}
}
return dp[amount];
}
};