题意:中文题就不说了。。。
分析:把式子化简下就是求sigma(xi^2)的最小值。dp[x1][y1][x2][y2][k]表示在(x1,y1)和(x2,y2 )的矩形内切第k刀。则可以横切也可以纵切。
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2]),dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2]);
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2]),dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2]);
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include <iomanip>
#include<iostream>
using namespace std;
const double inf=(double)(1<<30);
double dp[15][9][9][9][9];
double sum[9][9];
double a[9][9];
double count(int x1,int y1,int x2,int y2)
{
double res=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];
return res*res;
}
int main(void)
{
int n;
double tot;
while(scanf("%d",&n)==1)
{
tot=0;
memset(sum,0,sizeof(sum));
for(int i=1;i<=8;i++)
{
for(int j=1;j<=8;j++)
{
scanf("%lf",&a[i][j]);
tot+=a[i][j];
sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+a[i][j];
}
}
for(int x1=1;x1<=8;x1++)
{
for(int y1=1;y1<=8;y1++)
{
for(int x2=x1;x2<=8;x2++)
{
for(int y2=y1;y2<=8;y2++)
dp[0][x1][y1][x2][y2]=count(x1,y1,x2,y2);
}
}
}
for(int k=1;k<n;k++)
{
for(int x1=1;x1<=8;x1++)
{
for(int y1=1;y1<=8;y1++)
{
for(int x2=x1;x2<=8;x2++)
{
for(int y2=y1;y2<=8;y2++)
{
dp[k][x1][y1][x2][y2]=inf;
for(int t=x1;t<x2;t++)
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2]),dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2]);
for(int t=y1;t<y2;t++)
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2]),dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2]);
}
}
}
}
}
double ans=dp[n-1][1][1][8][8]*1.0/n - ((double)tot*1.0/n)*((double)tot*1.0/n);
// printf("%.3lf\n",(double)sqrt(ans));
cout<<setprecision(3)<<fixed<<sqrt(ans)<<endl;
}
return 0;
}