POJ 1191 棋盘分割

题目链接

题意:中文题就不说了。。。

分析:把式子化简下就是求sigma(xi^2)的最小值。dp[x1][y1][x2][y2][k]表示在(x1,y1)和(x2,y2 )的矩形内切第k刀。则可以横切也可以纵切。
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2]),dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2]);
dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2]),dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2]);

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include <iomanip>
#include<iostream>
using namespace std;
const double inf=(double)(1<<30);
double dp[15][9][9][9][9];
double sum[9][9];
double a[9][9];
double count(int x1,int y1,int x2,int y2)
{
    double res=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];
    return res*res;
}
int main(void)
{
    int n;
    double tot;
    while(scanf("%d",&n)==1)
    {
        tot=0;
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=8;i++)
        {
            for(int j=1;j<=8;j++)
            {
                scanf("%lf",&a[i][j]);
                tot+=a[i][j];
                sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+a[i][j];
            }
        }
        for(int x1=1;x1<=8;x1++)
        {
            for(int y1=1;y1<=8;y1++)
            {
                for(int x2=x1;x2<=8;x2++)
                {
                    for(int y2=y1;y2<=8;y2++)
                    dp[0][x1][y1][x2][y2]=count(x1,y1,x2,y2);
                }
            }
        }
        for(int k=1;k<n;k++)
        {
            for(int x1=1;x1<=8;x1++)
            {
                for(int y1=1;y1<=8;y1++)
                {
                    for(int x2=x1;x2<=8;x2++)
                    {
                        for(int y2=y1;y2<=8;y2++)
                        {
                            dp[k][x1][y1][x2][y2]=inf;
                            for(int t=x1;t<x2;t++)
                            dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2]),dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2]);
                            for(int t=y1;t<y2;t++)
                            dp[k][x1][y1][x2][y2]=min(min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2]),dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2]);
                        }
                    }
                }
            }
        }
        double ans=dp[n-1][1][1][8][8]*1.0/n - ((double)tot*1.0/n)*((double)tot*1.0/n); 
//      printf("%.3lf\n",(double)sqrt(ans));
        cout<<setprecision(3)<<fixed<<sqrt(ans)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值