最短路径算法——Bellman-Ford

目录

原理

代码(无负环)

代码(加判断负环)

代码(小优化) 


今天我们来讲一下求单源最短路径的算法—— Bellman-Ford 的模板写法。

原理

Bellman-Ford ,是一种基于松弛操作去求最短路的算法,它可以求出有负权的图的最短路,还可以判断是否存在最短路。哇,听起来好智能!

我们先来看看 Bellman-Ford 用到的核心思想——松弛。对于边 ( u , v ) ,我们用 dist( u ) 和 w( u , v ) 的和来尝试去更新 dist( v ) 。也就是:

dist ( v ) = min ( dist ( v ) , dist ( u ) + w ( u , v ) )

这样去做的含义是,我们尝试用 S -> u -> v ( S -> u 的路径取最短路)去更新 S -> v 的最短路,如果这样的话更优,我们就替换它。

Bellman-Ford 做的,就是不断尝试对图上的每一条边进行松弛,当一次循环没有成功地进行松弛操作时,算法停止。

每次循环的时间复杂度是 O(m) , m 是边的条数。

我们可以画图理解一下:

这是初始的图,然后我们把dist初始化一下

接下来,我们对所有边进行松弛

第一次松弛

第二次松弛

第三次松弛

第四次松弛

那么,有人就会问了,“ 啊,那么我们要进行几轮循环呢? ” 

答案是 n - 1 轮。为什么呢?因为,一次松弛操作,它会让最短路的长度至少 +1 ( S -> v 变成 S -> u -> v ),而一个有 n 个顶点的图,任意两点的最短路最多包含 n-1 条边。因为是最多包含 n-1 条边,所以松弛有可能会重复。

那,有的同学就又会问了:“ 如果我们的最短路径包含回路呢?这样就不是最多 n-1 条边啦!”

不可能的,正权回路就不用说了,去掉回路肯定还会有更短的最短路径。负权呢?如果最短路径中有负权回路,那我们每多走一次回路,我们的最短路径就会变短。所以,最短路径是不会包含回路的。

所以,这个算法的时间复杂度是 O(nm) , n 是顶点个数。


代码(无负环)

那么,我们就可以根据上面的推断,写出代码:

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int u[1000010],v[1000010],w[1000010];
int dist[1000010];
int n,m;
void bellman_ford()
{
	memset(dist,inf,sizeof(dist));
	dist[1]=0;
	for(int k=1;k<=n-1;k++)
	{
		for(int i=1;i<=m;i++)
		{
			if(dist[u[i]]+w[i]<dist[v[i]])
			{
				dist[v[i]]=dist[u[i]]+w[i];
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		cout<<dist[i]<<" ";
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>u[i]>>v[i]>>w[i];
	}
	bellman_ford();
	return 0;
}

这段代码是计算从 1 到 所有点的最短路径。


代码(加判断负环)

Bellman-Ford 还可以判断一个图是否存在负环。

我们知道,对于一个有最短路径的图,松弛 n-1 次就足够了,如果 n-1 次操作后,还有可以松弛的边,我们就可以知道,图中必然有负权环。

代码:

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int u[1000010],v[1000010],w[1000010];
int dist[1000010];
int n,m;
void bellman_ford()
{
	memset(dist,inf,sizeof(dist));
	dist[1]=0;
	bool flag=false;
	for(int k=1;k<=n-1;k++)
	{
		for(int i=1;i<=m;i++)
		{
			if(dist[u[i]]+w[i]<dist[v[i]])
			{
				dist[v[i]]=dist[u[i]]+w[i];
			}
		}
	}
	for(int i=1;i<=m;i++)
	{
		if(dist[u[i]]+w[i]<dist[v[i]])
		{
			flag=true;
			break;
		}
	}
	if(flag)
	{
		cout<<"有负环";
	}
	else
	{
		for(int i=1;i<=n;i++)
		{
			cout<<dist[i]<<" ";
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>u[i]>>v[i]>>w[i];
	}
	bellman_ford();
	return 0;
}

代码(小优化) 

但是, Bellman-Ford 算法经常会在没有达到 n-1 轮松弛之前,就已经把最短路给算出来了。我们也说过, n-1 是最大值。所以我们可以添一个 bool 变量,来看看在这一轮松弛中 dist 是否发生了变化,如果没有的话,我们可以跳出循环。

代码:

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int u[1000010],v[1000010],w[1000010];
int dist[1000010];
int n,m;
void bellman_ford()
{
	memset(dist,inf,sizeof(dist));
	dist[1]=0;
	bool flag=false;
	for(int k=1;k<=n-1;k++)
	{
		bool check=false;
		for(int i=1;i<=m;i++)
		{
			if(dist[u[i]]+w[i]<dist[v[i]])
			{
				dist[v[i]]=dist[u[i]]+w[i];
				check=true;
			}
		}
		if(!check)
		{
			break;
		}
	}
	for(int i=1;i<=m;i++)
	{
		if(dist[u[i]]+w[i]<dist[v[i]])
		{
			flag=true;
			break;
		}
	}
	if(flag)
	{
		cout<<"有负环";
	}
	else
	{
		for(int i=1;i<=n;i++)
		{
			cout<<dist[i]<<" ";
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>u[i]>>v[i]>>w[i];
	}
	bellman_ford();
	return 0;
}

可能有的人就会问了,“ 啊,这个算法的松弛操作,怎么有点像动态规划中的状态转移方程啊?”

在 1958 年, Richard Bellman (理查德·贝尔曼)发表了这个算法。

动态规划的创始人啊!

同时,1956年, Lester Ford 也发表了这个算法,所以它叫“Bellman-Ford”。

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值