- 博客(7)
- 收藏
- 关注
原创 【数值分析】数据拟合——一致逼近
上恰好存在一个有n+2个交错偏差点且两端点a,b都是偏差点。的n次最佳一致逼近多项式。简称最佳逼近多项式。上至少有n+2个交错偏差点组成,即有n+2个点。的最佳平方逼近函数。【所有误差平方和最小】根据多元函数取极值的必要条件得:其中设。上一致逼近(或均匀逼近)于函数。上的连续函数,对于任意给定的。的n次最佳一致逼近多项式,则。的n次最佳一致逼近多项式,若。上的一组线性无关的连续函数。上的一组线性无关的连续函数。的全体组成一个集合,记作。必同时存在正负偏差点。Chebyshev定理。在H中的最佳平方逼近。
2024-11-18 15:32:50
844
原创 【数值分析】数据拟合——正交多项式
正交多项式:若则称与在上正交。正交函数系:若函数族满足关系,则称时上的正交函数系。若则称之为标准正交函数系。带权正交多项式:若为上的权函数且满足则称与在上带权正交。带权正交函数系:若函数族满足关系,则称是上带权的正交函数系。若则称之为标准正交函数系。常见的正交函数系:三角函数系。
2024-11-17 20:02:07
863
原创 【数值分析】数值微分
从截断误差的角度来看,步长越小,计算结果越准确;从舍入误差的角度来看,步长不宜太小。计算停止,否则继续上面的过程,直到满足要求为止。故求插值型求导公式通常用于求节点处导数的近似值。(1)用h计算一次差商,记为D(h);,用多项式的导数近似函数f(x)的导数。为节点,构造f(x)的插值多项式。,误差显然不易估计,当时。
2024-11-17 09:38:12
559
原创 【数值分析】数值积分——Newton—Cotes求积公式、龙贝格求积法
定积分的引入:将区间分为n段区间,即,每个子区间的长度在每个子区间上任取一点,当区间足够小时,每个区间的面积可近似为,对求和对去极限,则曲边梯形的面积牛顿—莱布尼兹公式:,该公式在求解含函数的定积分时,若函数的原函数容易得到,那么可以得到一个精确解。但在实际问题中很多函数的原函数难以求解或无法找到,导致无法使用牛顿—莱布尼兹公式。数值积分面临的问题:的表达式未知;的原函数不能初等表示,如何求解的可估计误差的近似值?
2024-11-15 15:40:28
3449
原创 【数值分析】数据拟合——离散最小二乘法
在数学上,内积空间是增添了一个额外的结构的矢量空间。这个额外的结构叫做内积或标量积,这个增添的结构将一对矢量与一个纯量连接起来。在实际问题中,存在很多非线性曲线,而最小二乘拟合争对线性曲线进行拟合,再对非线性曲线进行拟合时可先将其线性化。已知一组数据,即平面上n个点(x,y)(i=1,...,n),寻求一个函数(曲线)(3)用多种曲线类型拟合,选择最小二乘大意义下误差最小的拟合曲线。则称( , )为H上的内积,定义了内积后的空间H称为内积空间。1,2,∞三种范数是p-范数的特数情况。
2024-11-10 15:01:07
1746
原创 【数值分析】插值逼近法——三次样条插值函数
一般情况下,在利用多项式对某一函数近似逼近时,多项式的次数越高,需要的数据就越多,而预测也就越准确。随着多项式次数的增加,会出现插值结果偏离原函数的现像,这一现像称为龙格现象。不同次数的Lagrange插值多项式的比较图从图中可以看出高次插值多项式存在的缺陷龙格现象产生的原因:误差由截断误差和舍入误差两部分组成,而在插值的计算过程中,增加插值多项式的次数可以减少截断误差,但舍入误差可能会扩散或放大。设为区间的一个划分。如果分段函数满足下述条件:(1)都在区间上连续,即;(2)
2024-11-05 20:22:12
5854
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人