目录
传统的定积分原理和方法
定积分的引入:
将区间分为n段区间,即
,每个子区间的长度
在每个子区间上任取一点
,当区间足够小时,每个区间的面积可近似为
,对
求和
对去极限,则曲边梯形的面积
牛顿—莱布尼兹公式:,该公式在求解含函数
的定积分时,若函数
的原函数
容易得到,那么可以得到一个精确解。但在实际问题中很多函数
的原函数难以求解或无法找到,导致无法使用牛顿—莱布尼兹公式。
数值积分面临的问题:的表达式未知;
的原函数不能初等表示,如何求解
的可估计误差的近似值?
只利用有限节点和函数在有限个节点处的函数值计算积分,只涉及加减乘除四则运算。
对积分得近似求解有以下方法:
矩形法:
梯形法:
数值积分公式
·数值积分公式的一般形式
式中
称为求积节点,
称为求积系数,
仅与节点
的选取有关,
不依赖于被积函数
的具体形式。
设给定一组节点,以多给的n+1个节点作插值节点作函数
的插值多项式:
,带入求积公式:
,
但在上述公式中插值型求积公式的求积系数当节点不等距很难求得,误差表达式中得不确定点的处理有难度。
·Newton—Cotes求积公式
设将积分区间n等分,记步长
,选取等距节点
将代入求积公式得:
Newton—Cotes求积公式可改写为:
其中:(插值型、节点等距)
·梯形求积公式(n=1)
取,
Cotes系数为:
求积公式为:
即,称为梯形求积公式
·辛普森求积公式(n=2)
取
Cotes系数为:
求积公式为:
即,
取
根据Hermite插值余项:
由积分中值定理知:
·代数精度
分析插值型求积公式得余项:
当f(x)是次数不高于m的多项式时,有求积公式能成为准确的等式。闭区间
上的连续函数可用多项式逼近。
对于一个一般的求积公式:如果对于次数不超过m的多项式均能准确的成立,但对于m+1次多项式不准确成立,则称该求积公式具有m次代数精度。
证明方法:对于当分别为
时,求积公式
精确成立。当
时,
不精确成立即可。
一般地要是求积公式具有m次精度,只要令都能准确成立,这就要求
,构造求积公式原则上是确定参数
和
的代数问题。
定理:n+1个节点的求积公式为插值型求积公式的充分必要条件是公式至少具有n次代数精度。
证明:
必要性:n+1个节点的插值型求积公式的求积系数及余项为:
,而
当为不高于n次的多项式时,余项
,所以求积公式至少具有m次代数精度。
充分性:若求积公式至少有n次代数精度,则对n次多项式精确成立,即
,而
,
取,所以有
,即求积公式为插值型求积公式。
定理:当n为偶数时,牛顿—科特斯求积公式至少具有n+1次代数精度。
·复化求积
Newton—Cotes求积公式在节点较多时,由于高次插值的不稳定导致不稳定。复化求积法将区间分为若干个子区间,在每个子区间上用低阶求积公式。
·复化梯形公式
将区间分为n等分,分点
,在每个子区间
上引用梯形公式
,求和可得:
,
在
连续,故
,使得
时可以证明:
·复化辛普森公式
将区间分为n=2m等分,分点
,在每个子区间
上引用,辛普森公式得:
在区间[a,b]连续,故
,使得
,
时可以证明:
·逐次分半算法
·梯形法的逐次分半算法
设将区间[a,b]分为n等分,共有n+1个分电,如果将求积区间再二分一次,则分点增加至2n+1个
每个子区间经过二分增加了一个分点,
,用复化梯形求积公式求得该子区间上的积分值为:
,
,
复化梯形公式:,得出梯形法的逐次分半公式:
·逐次分半算法:
梯形公式:
将区间[a,b]二等分,每个小区间的长度为,
;
将区间[a,b]四等分,每个小区间的长度为
,
;
……
将区间[a,b]等分,分点
,每个小区间的长度为
,由归纳法可得:
·龙贝格求积法
复化梯形公式算法简单,但收敛慢,精度低,由复化梯形求积公式的余项表达式知:
假定,,若
很小,可保证
的误差很小
当n=1时,我们计算上式右端:
这恰好是辛普森公式的结果,即有
类似的可验证:
即:
复化辛普森求积公式的余项:
假定,,
可验证:——复化柯特斯积分值
事实上,恰为柯斯特公式
同理:
根据柯斯特积分公式的余项:
,
——龙贝格积分值
即,,该式为龙贝格公式得到的龙贝格序列
用若干个积分近似值推算出更为精确的积分近似值的方法,成为外推方法。
序列分别成为梯形序列、辛普森序列、科特斯序列和龙贝格序列。由龙贝格序列还可以继续外推,但因
及
故通常到龙贝格序列为止。
记
则就是梯形值序列
,
就是辛普森值序列
,
就是科特斯值序列
,
就是龙贝格值序列
·理查森外推法
设将区间
等分,
,记用复化梯形公式求得的近似值为
记为
注意到:,而
,
则
,即
如此构造序列就是辛普森序列
由,若令
这样构造的序列就是科特斯序列
,
如此继续下去,每加速一次,误差的量级便提高2阶,经过m(m=1,2,……)次加速后,余项使取下列形式: