2020HDU多校2 In Search of Gold

原题链接

问题重述

给你一个无向树,其中每条边有AB两种边权。给定一个k** k ≤ 20 k\leq 20 k20**,让你选k条边权值为A,剩下的边权值为B,最小化该条件下的树的直径。

问题分析

树的直径两种求法

  1. 两次BFS可以找到树的直径, 基于规则是图没有变化, 显然这个题目中不太适用.
  2. 一次DP可以找到树的直径, 并且DP方程是每次处理一个子树 ( 感觉可以为我所用? )

然后就选了一次DP来求解.

DP讲解

讲真当时做这个题没看到 k ≤ 20 k\leq 20 k20的条件, 不然还有可能冲出来?

一看这个k这么小, 就想着能不能直接 DP[N][K], 表示N为根节点的子树里面, 选了K个A, 剩下的全选B的情况下, 最长的链长度.

然后想一下当时怎么求树的直径: 维护一个DP[N]表示以N为根的子树最长链的长度, 然后每次用DP[v]更新DP[u]的时候统计一次最大值.

那么我们要是想直接计算题目中的树的直径好像并不简单.

考虑把这个问题转化为二分答案, 即已知树的直径不能超过某个值mid, 求是否存在一种方案使得其可以满足.

另DP[u][k]表示以u为根节点的子树上, 选了k条A边的最长链长度, 初始条件: DP[叶子][0]=0, 考虑背包式的更新:

D P [ u ] [ k + 1 ] = max ⁡ ( D P [ u ] [ p ] , D P [ v ] [ k − p ] + A ) , 如 果 D P [ u ] [ p ] + D P [ v ] [ l ] + A ≤ m i d D P [ u ] [ k ] = max ⁡ ( D P [ u ] [ p ] , D P [ v ] [ k − p ] + B ) , 如 果 D P [ u ] [ p ] + D P [ v ] [ l ] + B ≤ m i d DP[u][k+1] = \max({DP[u][p], DP[v][k-p] + A}), 如果 DP[u][p] + DP[v][l] + A \leq mid\\ DP[u][k] = \max({DP[u][p], DP[v][k-p] + B}), 如果 DP[u][p] + DP[v][l] + B \leq mid DP[u][k+1]=max(DP[u][p],DP[v][kp]+A),DP[u][p]+DP[v][l]+AmidDP[u][k]=max(DP[u][p],DP[v][kp]+B),DP[u][p]+DP[v][l]+Bmid

默认初始值都搞成 + ∞ +\infty +(或者是mid+1), 能用就行.

最后的判断条件自然就是DP[root][k]是否小于等于mid了!

代码

#include<bits/stdc++.h>
using namespace std;

const int N = 2e4+17, M = 4e4+17, K=21;
int fr[N], to[M], nxt[M], len1[M], len2[M], tails, size[N];
void add(int f, int t, int l1, int l2){
	to[++tails] = t;
	nxt[tails] = fr[f];
	fr[f] = tails;
	len1[tails] = l1;
	len2[tails] = l2;
}

int n, m;
long long l, r, ans, mid, dp[N][K], tp[K];

void Check(int u, int fat){
	size[u] = dp[u][0] = 0;
	for(int p=fr[u], v;p;p=nxt[p]){
		if((v=to[p])==fat)	continue;
		Check(v, u);
		int l1 = len1[p], l2 = len2[p];
		int size1 = size[u], size2 = size[v];
		int size3 = min(m, size1+size2+1);
		for(int j=0;j<=size3;++j)	tp[j] = mid+1;
		for(int j=0;j<=size1; ++j)
			for(int k=0;k<=size2 && j+k<=m;++k){
				if(dp[u][j] + dp[v][k] + l1 <= mid)
					tp[j+k+1] = min(tp[j+k+1], max(dp[u][j], dp[v][k]+l1));
				if(dp[u][j] + dp[v][k] + l2 <= mid)
					tp[j+k] = min(tp[j+k], max(dp[u][j], dp[v][k]+l2));
			}
		size[u] = size3;
		for(int j=0;j<=size3;++j)
			dp[u][j] = tp[j];
	}
	return;
}

void work(){
	scanf("%d %d",&n,&m);	tails = l = r = 0;
	for(int i=1;i<=n;++i)	fr[i] = 0;
	for(int i=1,p1,p2,l1,l2;i<n;++i){
		scanf("%d%d%d%d",&p1, &p2, &l1, &l2);
		add(p1,p2,l1,l2);	add(p2,p1,l1,l2);
		r += max(l1, l2);
	}
	while(l <= r){
		mid = (l+r)>>1;
		Check(1, 0);
		if(dp[1][m] <= mid){
			ans = mid;
			r = mid-1;
		}else{
			l = mid+1;
		}
	}
	printf("%lld\n", ans);
}

int main(){
	int T;scanf("%d",&T);
	while(T--)	work();
	return 0;
}
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页