计算
时间限制: 2 Sec 内存限制: 128 MB题目描述
给定一个数列,第i个位置包含两个数ai,bi
每次询问给出x,y
求数列ai*x+bi*y的最大值
输入所有数为自然数,在int范围内
输入格式
第一行为n,m。n为数列长度,m为询问个数。
接下来n行,每行两个数,代表ai,bi
接下来m行,每行两个数,代表x,y
每行输出一个答案
n,m<=100000
样例输入
3 3
1 5
9 0
9 1
4 4
1 1
3 4
样例输出
40
10
31
学长讲的估值线段树,主要是通过维护左右子树A,B的最大值来估计子树的值,优先搜索估值大的子树,直到叶子节点来更新ans(貌似用了K-D树思想?)
在搜索其他节点时,先判断估值能否更新ans,能的话再继续向下询问.
最坏情况便利整棵树,不过一般还是很快的。(主要是可以很方便地水一些求最值的题)
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define maxn 400005
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
inline int read()
{ char c=getchar();int x=0,y=1;
while(c<'0'||c>'9'){if(c=='-') y=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*y;
}
typedef long long ll;
int n,q,maxa[maxn],maxb[maxn];//系数A,B的最大值
ll ans=-1e18,v,w;
struct tree{int lc,rc;}tr[maxn];
void mt(int z)
{ int lch=z<<1,rch=lch|1;
maxa[z]=max(maxa[lch],maxa[rch]);
maxb[z]=max(maxb[lch],maxb[rch]);
}
void build(int x,int y,int z)
{ tr[z].lc=x;tr[z].rc=y;
if(x==y){maxa[z]=read();maxb[z]=read();return;}
int mid=x+y>>1,lch=z<<1,rch=lch|1;
build(x,mid,lch);build(mid+1,y,rch);
mt(z);
}
void dfs(int z)
{ if(tr[z].lc==tr[z].rc){ans=max(ans,maxa[z]*v+maxb[z]*w);return;}
int lch=z<<1,rch=lch|1;
ll t1,t2;
t1=maxa[lch]*v+maxb[lch]*w,t2=maxa[rch]*v+maxb[rch]*w;
if(t1>t2){if(t1>ans) dfs(lch);if(t2>ans) dfs(rch);}//估值过程,选择估值更优的子树,注意要与ans比较,能更新ans再搜索
else{if(t2>ans) dfs(rch);if(t1>ans) dfs(lch);}
}
int main()
{ n=read();q=read();
build(1,n,1);int x;
for(int i=1;i<=q;i++)
v=read(),w=read(),dfs(1),printf("%lld\n",ans),ans=-1e18;
return 0;
}