计算(估值线段树)

计算

时间限制: 2 Sec  内存限制: 128 MB

题目描述

给定一个数列,第i个位置包含两个数ai,bi

每次询问给出x,y

求数列ai*x+bi*y的最大值

输入所有数为自然数,在int范围内

输入格式

第一行为n,m。n为数列长度,m为询问个数。

接下来n行,每行两个数,代表ai,bi

接下来m行,每行两个数,代表x,y

每行输出一个答案

n,m<=100000

 

样例输入

3 3

1 5

9 0

9 1

4 4

1 1

3 4

样例输出

40

10

31


学长讲的估值线段树,主要是通过维护左右子树A,B的最大值来估计子树的值,优先搜索估值大的子树,直到叶子节点来更新ans(貌似用了K-D树思想?)

在搜索其他节点时,先判断估值能否更新ans,能的话再继续向下询问.

最坏情况便利整棵树,不过一般还是很快的。(主要是可以很方便地水一些求最值的题)

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#define maxn 400005
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
inline int read()
{   char c=getchar();int x=0,y=1;
    while(c<'0'||c>'9'){if(c=='-') y=-1;c=getchar();}
    while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    return x*y;
}
typedef long long ll;
int n,q,maxa[maxn],maxb[maxn];//系数A,B的最大值 
ll ans=-1e18,v,w;
struct tree{int lc,rc;}tr[maxn];
void mt(int z)
{   int lch=z<<1,rch=lch|1;
    maxa[z]=max(maxa[lch],maxa[rch]);
    maxb[z]=max(maxb[lch],maxb[rch]);
}
void build(int x,int y,int z)
{   tr[z].lc=x;tr[z].rc=y;
    if(x==y){maxa[z]=read();maxb[z]=read();return;}
    int mid=x+y>>1,lch=z<<1,rch=lch|1;
    build(x,mid,lch);build(mid+1,y,rch);
    mt(z);
}
void dfs(int z)
{   if(tr[z].lc==tr[z].rc){ans=max(ans,maxa[z]*v+maxb[z]*w);return;}
    int lch=z<<1,rch=lch|1;
    ll t1,t2;
    t1=maxa[lch]*v+maxb[lch]*w,t2=maxa[rch]*v+maxb[rch]*w;
    if(t1>t2){if(t1>ans) dfs(lch);if(t2>ans) dfs(rch);}//估值过程,选择估值更优的子树,注意要与ans比较,能更新ans再搜索 
    else{if(t2>ans) dfs(rch);if(t1>ans) dfs(lch);}
}
int main()
{   n=read();q=read();
    build(1,n,1);int x;
    for(int i=1;i<=q;i++)
        v=read(),w=read(),dfs(1),printf("%lld\n",ans),ans=-1e18;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值