基本类型包装类
BigDecimal类的常用方法
作用:用来精确计算;
结论:
-
BigDecimal是用来进行精确计算的
-
创建BigDecimal的对象,构造方法使用参数类型为字符串的;
-
四则运算中的除法,如果除不尽请使用divide的三个参数方法
代码示例:
-
BigDecimal div = bd1.divide(参与运算的对象,小数点后精确到多少位,舍入模式)
-
参数1:表示参与运算的BigDecimal对象
-
参数2:表示小数点后面精确到多少位
-
参数3:舍入模式
-
BigDecimal.ROUND_UP 进一法
-
BigDecimal.ROUND_FLOOR 去尾法
-
BigDecimal.ROUND_HALF_UP 四舍五入
-
-
Integer类的概述和使用
Integer:该对象中包装了一个基本数据类型int的值
自动装箱和自动拆箱
-
拆箱:把基本数据类型装换为对应的包装类类型;
-
拆箱:把包装类类型转换为对应的基本数据类型;
数组的高级操作
数组的二分查步骤
-
定义两个变量,表示要查找的范围。默认min = 0,max = 最大索引
-
循环查找,但是min <= max
-
计算出mid的值
-
判断mid位置的元素是否为要查找的元素,如果是直接返回对应索引
-
如果要查找的值在mid的左半边,那么min值不变,max = mid - 1继续下次循环查找
-
如果要查找的值在mid的右半边,那么max值不变,min = mid + 1继续下次循环查找
-
当min > max时,表示要查找的元素在数组中不存在,返回-1
冒泡排序流程
-
如果有n个数据进行排序,总共需要比较n-1次
-
每一次比较完,下一次的比较就会少一个数据参与
代码实例:
int[] arry = {12,454,-123,98,90,0,67,34,-22,100};
for (int i = 0; i < arry.length; i++) {
for (int j = i + 1; j < arry.length; j++) {
if (arry[i] > arry[j]){
int temp = arry[i];
arry[i] = arry[j];
arry[j] = temp;
}
}
}
for (int i = 0; i < arry.length; i++) {
System.out.println(arry[i]);
}
*****递归*****
递归概述:以编程的角度来看,递归指的是方法定义中调用方法本身的现象;
实例代码:
public static void main(String[] args) {
//求一到一百的值
int js = getJs(100);
System.out.println(js);
}
private static int getJs(int i) {
if(i == 1){
return 1;
}else {
return i + getJs(i-1);
}
}
递归解决问题的思路:
-
把一个复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解
-
递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算;
递归解决问题要找到两个内容:
-
递归出口:否则会出现内存溢出
-
递归规则:与原问题相似的规模较小的问题
快排
-
冒泡排序算法中,一次循环结束,就相当于确定了当前的最大值,也能确定最大值在数组中应存入的位置
-
快速排序算法中,每一次递归时以第一个数为基准数,找到数组中所有比基准数小的,再找到所有比基准数大的。小的全部放左边,大的全部放右边,确定基准数的正确位置;
基准数左边的,都比基准数小
基准数右边的,都比基准数大
相当于已经找到基准数应该在的位置
示例代码
public static void main(String[] args) { int[] num = {9,5,7,3,6,4,1}; getKauiPai(num,0,num.length-1); for (int i = 0; i < num.length; i++) { System.out.print(num[i]+" "); } } private static void getKauiPai(int[] num, int left, int right) { if (right < left){ return; } int left0 = left; int right0 = right; //基准数mid int mid = num[left0]; while (left != right){ //左查 while(right > left && num[right] >= mid){ right--; } //右查 while (right > left && num[left] <= mid){ left++; } int le = num[left]; num[left] = num[right]; num[right] = le; } //基准数归位 int t = num[left]; num[left] = num[left0]; num[left0] = t; getKauiPai(num,left0+1,left-1); }