JSOI2017 R1 游记

本文记录了作者参加JSOI2017第一轮的经历,第一天在T1题目上遭遇困难,尝试多种算法但未能成功,T2和T3也分别遇到了挑战。第二天的比赛,T1的暴力优化意外通过,而T2和T3仍然存在问题。作者总结了自己的不足,表示将努力准备即将到来的GDOI,避免留下遗憾。
摘要由CSDN通过智能技术生成

JSOI2017 R1 游记

      在zjoi受尽打击的我在看了历年jsoi题之后告诉自己一定要好好做,结果就是受到了更强的打击……

DAY 1

       画风好像跟我想象的不一样??T1树上路径O(n)随便跑,环内和环上好像不是特别容易弄?先搞出每个点到城市的转换点的最短路,感觉没怎么打过dij然后我就打了线段树,调了好半天,然后再瞎维护一下,m log m貌似ok,然后我又打了棵线段树?8k代码没调出来也是挺崩溃的……后半部分换了暴力m^2,过了样例就赶紧跑去打暴力,结果20分炸裂……T2 暴力显然10分,30分用个矩阵,最后10分钟打的这题,打完暴力试图敲个矩阵,结果没敲出来.....T3 n^4小样例过了,大样例差几就是过不去,结果我们一群人t3集体爆0也不知道什么鬼。Day 1 20分简直了……

DAY 2

       看到T1在想这是强行题答?感觉后面肯定是构造的……打了个小暴力跑了下两个小的,还有三个小点,我人工切割了之后,把一块块扔进暴力跑,然后

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值