图论基础知识(四) —— 有向图

本文介绍了有向图的基础知识,包括定义、入度和出度的概念、双向连通与单向连通图的定义,以及竞赛图的特性。通过对有向图的深入探讨,阐述了其在图论中的重要地位。
摘要由CSDN通过智能技术生成

定义

定义1:有向图

设V是一个非空集合,A是一个由V中元素的有序对构成的多重集,有序对D = <V, A>称为一个有向图,其中,V称为顶点集,其中的元素称为顶点或点;A称为弧集,其中的元素是弧。

  由定义可见,有向图和无向图的区别仅仅在于有向图的弧集是有序对的多重集,而无向图的边集是无序顶点对的多重集,无向图的一切概念均可平移到有向图。

定义2:入度、出度

设D是一个有向图,D中顶点 v v v的入度 d D − ( v ) d_D^-(v) dD(v)是指以 v v v为头的弧的数目,v的出度 d D + ( v ) d_D^+(v) d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值