1. 定义
给定 n + 1 n+1 n+1个点的位置矢量 P i ( i = 0 , 1 , … , n ) P_i(i=0,1,\dots,n) Pi(i=0,1,…,n),则Bezier曲线可以定义为
P ( t ) = ∑ i = 0 n P i B i , n ( t ) , t ∈ [ 0 , 1 ] P(t)=\sum_{i=0}^nP_iB_{i,n}(t),\quad t \in [0,1] P(t)=i=0∑nPiBi,n(t),t∈[0,1]
其中 P i P_i Pi(i=0,1,\dots,n)构成该Bezier曲线的特征多边形, B i , n ( t ) B_{i,n}(t) Bi,n(t)是 n n n次Bernstein基函数
B i , n ( t ) = C n i t i ( 1 − t ) n − i = n ! i ! ( n − i ) ! t i ⋅ ( 1 − t ) n − i , ( i = 0 , 1 , … , n ) B_{i,n}(t) = C_n^it^i(1-t)^{n-i}=\frac{n!}{i!(n-i)!}t^i\cdot (1-t)^{n-i},\quad (i=0,1,\dots,n) Bi,n(t)=Cni