提取分层线性回归模型系数和截距的R语言代码
分层线性回归是一种常用的统计分析方法,用于探索自变量对因变量的影响关系。在R语言中,我们可以使用coef函数提取分层线性回归模型的系数和截距。本文将为您介绍如何使用coef函数来提取这些参数。
首先,我们需要加载所需的R包。在本例中,我们使用的是lm函数进行分层线性回归建模,因此需要加载stats包。
library(stats)
接下来,我们准备一个示例数据集来进行分层线性回归分析。假设我们正在研究房屋价格与房屋面积、房间数和地段之间的关系。
# 创建示例数据集
data <- data.frame(
price = c(250, 300, 280, 320, 270),
area = c(1500, 1800, 1600, 2000, 1700),
rooms = c(3, 4, 3, 5, 3),
location = c("A", "B", "A", "B", "A")
)
现在,我们可以使用lm函数建立分层线性回归模型。在此模型中,我们将价格作为因变量,面积、房间数和地段作为自变量。
# 建立分层线性回归模型
mod