集合序列的极限

[1] 讲到集合序列的极限,不能直观理解其中的上、下极限,理解不了它代表什么东西的上、下界。[2] 给了一个辅助理解的例子,此处写下我的理解。

Limit of Set Sequence

对一个集合序列 { A n } n = 1 ∞ \{A_n\}_{n=1}^\infty {An}n=1,其极限是用来描述这个序列里一些稳定的特征,即一些出现无数次的元素。一个稳定的元素 x 包含在序列中无穷多个集合 A n A_n An 内。

某元素 x 想成为稳定特征,其出现无数次的方式可以有两种:

  • x 在每个 A n A_n An 中都出现,till the end of the world,稳得一匹,但允许在开头有有限次例外,即 ∃ N ≥ 1 \exists N \geq 1 N1,使得 x ∈ ⋂ k = N ∞ A k x\in\bigcap_{k=N}^\infty A_k xk=NAk,而在 N 之前,x 可以出现,也可以不出现;
  • x 可以间歇性出现,但要出现无数次。可以想象有一个查出勤的训导主任在遍历 n ∈ N + n\in\N^+ nN+,对每一个 n,都可以同时看到 { A k } k ≥ n \{A_k\}_{k\geq n} {Ak}kn 中所有的 A k A_k Ak,记为 B n = ⋃ k = n ∞ A k B_n = \bigcup_{k=n}^\infty A_k Bn=k=nAk,但凡在一个 B n B_n Bn 中没看见 x 就把它踢了,所以 x 在每个 B n B_n Bn 中都可以翘掉其中任意多个 A k A_k Ak,只需保证在其中至少一个 A k A_k Ak 中出现,即 ∀ n ≥ 1 \forall n \geq 1 n1,都有 x ∈ ⋃ k = n ∞ A k x\in \bigcup_{k=n}^\infty A_k xk=nAk

这两种模式分别对应两种极限:

  • lim ⁡ inf ⁡ A n = ⋃ n = 1 ∞ ⋂ k = n ∞ A k \lim\inf A_n = \bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k liminfAn=n=1k=nAk
  • lim ⁡ sup ⁡ A n = ⋂ n = 1 ∞ ⋃ k = n ∞ A k \lim\sup A_n = \bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k limsupAn=n=1k=nAk

若两个极限相等,就认为 { A n } n ≥ 1 \{A_n\}_{n\geq 1} {An}n1 的极限存在,为: lim ⁡ n → ∞ A n = lim ⁡ inf ⁡ A n = lim ⁡ sup ⁡ A n \lim_{n\rightarrow \infty} A_n=\lim\inf A_n=\lim\sup A_n nlimAn=liminfAn=limsupAn

Limit Superior and Limit Inferior

lim ⁡ sup ⁡ A n \lim\sup A_n limsupAn 称为上极限集,而 lim ⁡ inf ⁡ A n \lim\inf A_n liminfAn 称为下极限集,应该是指这两类稳定特征中,上极限集的筛选规则较松,是极限的上界;而下极限集的筛选较严,是极限的下界。实际上,有: lim ⁡ inf ⁡ A n ⊆ lim ⁡ sup ⁡ A n \lim\inf A_n \subseteq \lim\sup A_n liminfAnlimsupAn 但反过来不一定。

  • 证子集

因为 lim ⁡ inf ⁡ A n = ⋃ n = 1 ∞ ⋂ k = n ∞ A k \lim\inf A_n = \bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k liminfAn=n=1k=nAk,对 ∀ x ∈ lim ⁡ inf ⁡ A n \forall x\in \lim\inf A_n xliminfAn ∃ N ≥ 1 \exists N\geq 1 N1,使得 x ∈ ⋂ k = N ∞ A k x\in \bigcap_{k=N}^\infty A_k xk=NAk,所以对 ∀ n ′ ≥ 1 \forall n'\geq 1 n1,都有 ∀ k ′ ≥ max ⁡ { n ′ , N } \forall k'\geq\max\{n',N\} kmax{n,N},使得 x ∈ A k ′ x\in A_{k'} xAk,即 x ∈ ⋂ k ′ = max ⁡ { n ′ , N } ∞ A k ′ ⊆ ⋃ k ′ = max ⁡ { n ′ , N } ∞ A k ′ ⊆ ⋃ k ′ = n ′ ∞ A k ′ \begin{aligned} x & \in \bigcap_{k'=\max\{n',N\}}^\infty A_{k'} \\ & \subseteq \bigcup_{k'=\max\{n',N\}}^\infty A_{k'} \\ & \subseteq \bigcup_{k'=n'}^\infty A_{k'} \end{aligned} xk=max{n,N}Akk=max{n,N}Akk=nAk 因为对 ∀ n ′ ≥ 1 \forall n'\geq 1 n1 成立,所以 x ∈ ⋂ n ′ = 1 ∞ ⋃ k ′ = n ′ ∞ A k ′ = lim ⁡ sup ⁡ A n x\in \bigcap_{n'=1}^\infty\bigcup_{k'=n'}^\infty A_{k'} = \lim\sup A_n xn=1k=nAk=limsupAn,得证。

  • 证反方向不一定成立:一个反例

A n = { { a } , n = 2 m − 1 { b } , n = 2 m ( m ≥ 1 ) A_n=\left\{\begin{aligned} & \{a\}, & n & =2m-1 \\ & \{b\}, & n & =2m \end{aligned}\right. \quad (m\geq 1) An={{a},{b},nn=2m1=2m(m1) 此时 lim ⁡ inf ⁡ A n = ∅ \lim\inf A_n=\empty liminfAn=,而 lim ⁡ sup ⁡ A n = { a , b } \lim\sup A_n=\{a,b\} limsupAn={a,b},所以 lim ⁡ inf ⁡ A n ⊇ lim ⁡ sup ⁡ A n \lim\inf A_n \cancel{\supseteq} \lim\sup A_n liminfAn limsupAn

References

  1. 测度论与概率论基础(重制版)合集 P1
  2. 集合极限的理解
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值