我觉得理解这个概念首先就是要和实数数列的上限和下限区分开,要理解上限和下限,我认为还是从能不能加入集合来选择比较好:
集合论的标准语言来说,一个集合序列的下确界是这些集合的可数交,也就是包含在所有集合里的最大集合
上极限可以以相反方式定义。一个集合序列的上确界是包含这些集合的最小集合
通俗点就是
即:上限集 是能够满足一些要求,一种描述集合列的并且条件相对宽松的 集合
下限集 是能够满足一些要求,一种描述集合列的并且条件相对苛刻的 集合
他们之间还有着相互包含的关系,即上限集包含下限集(上限集>=下限集),
下面是上限集和下限集的定义,参考书籍是复变函数论第二版:
单调集合列的极限集:
一般集合列的上下极限集
结合全体集合交集和全体集合并集,更容易理解下限集和上限集。
交集的元素:在全部的无穷个集合中出现过,并且,在0个集合中没有出现过。
下限集的元素:交集 + {入选标准稍加放宽的元素 | 在无穷个集合中出现过,并且,在有限个集合中没有出现过}
上限集的元素:下限集 + {入选标准进一步放宽的元素 | 在无穷个集合中出现过,并且,在无穷个集合中没有出现过}
并集的元素:上限集 + {尚未入选的所有元素 | 在有限个集合中出现过}
基于以上,我们就可以集合列的上限集和下限集啦
一个小例题: