HYSBZ bzoj 3668 起床困难综合症 NOI 2014

Problemwww.lydsy.com/JudgeOnline/problem.php?id=3668

分析:因为每一个操作都是位操作,考虑分开每一个2进制位单独地贪心

题目说,初始的攻击要限定在 [ 0,m ] 的范围,并要最后的攻击尽可能大,又因为越是高位,无论对初始值还是对末尾值都是影响越大,所以从高位到低位考虑

每一位,首先考虑能不能是0(因初始值得限定,应越小越好),如果用0跑一遍所有操作,相应的位变成1,那初始攻击的那一位肯定是取0

如果用0跑出来是0,要考虑能不能上1,两点:此位上1会不会使得初始总值超m(能不能)?能不能跑出1(值不值)?

误区:用0跑出来的结果 与 用1跑出来的结果 一定相反

不一定!比如: 0 AND 0 = 0,1 AND 0 = 0。经过一系列运算,0跑的结果和1跑的结果之间并没有什么关系

写法一:在一个循环里同时处理初始的攻击力和末尾的攻击力,这样写有个坑:一定要从第31位(移位数30,int一般32位,最高位符号)开始考虑,不能忽略对高位的考虑

举个例子:m=1,要 OR 一个2,01 OR 10 = 11,如果因为数位数数到m的位数是1,而忽略了高位(以为高位不用考虑),那高位可能有的增益就被莫名抛弃,WA

/* 不数位数版 */
#include <stdio.h>
#define SIZE 100000
char op[SIZE+5]; // 只取操作的第1个字母,后面的直接覆盖掉
int t[SIZE];
int main()
{
    int i, n, m, sum, ans;
    scanf("%d%d%*c", &n, &m); // 吃掉换行
    for(i = 0; i < n; i++)
      scanf("%s %d%*c", op+i, t+i); // 吃掉换行
    // sum表示初始的攻击
    // ans表示最终的攻击
    for(i = 30, sum = ans = 0; ~i; i--) // 重要循环:i从30开始
    {
      int zero = 0, one = 1 << i, j; // 0和1的情况同时跑
      // 我估计one可以初始化为-1
      // 因为-1补码全是1,而我只取某1位
      // 讲道理对结果没影响
      for(j = 0; j < n; j++)
        switch(op[j])
        {
            case 'A':
              zero &= t[j]; one &= t[j]; break;
            case 'O':
              zero |= t[j]; one |= t[j]; break;
            case 'X':
              zero ^= t[j]; one ^= t[j]; break;
        }
        if(zero >> i & 1) // 如果用0跑出1,0本1利
          ans |= 1 << i; // 原则上sum要在此位上0,但它本来就是0…
        else if(one >> i & 1 && (sum | 1 << i) <= m ) // 0跑出0而1跑出1且上1不超m
        {
            ans |= 1 << i;
            sum |= 1 << i;
        }
    }
    printf("%d\n", ans);
    return 0;
}

写法二:数下位数,第1趟循环只对 0  ~ bit 位的数进行考虑,因为对初始攻击值有影响的就只有这些位

一趟循环下来,搞掂了sum先,然后让sum再跑一遍所有操作,就是为了考虑高位可能的增益

此时sum的高位肯定是0,是满足不超m的贪心出来的最优初始值,跑出来是什么答案就是什么

这样貌似要分两次跑循环会慢,但其实强行对不满31位的m考虑31位会更慢

/* 数位数版 */
#include <stdio.h>
#define SIZE 100000
char op[SIZE+5];
int t[SIZE];
int main()
{
    int i,n,m,sum,bit;
    scanf("%d%d%*c",&n,&m);
    for(i=0; i<n; i++)
      scanf("%s %d%*c",op+i,t+i);
    // 数位数
    for(sum=m,bit=0; sum; sum>>=1)
      bit++;
    // 先贪心出个sum
    for(i=bit-1,sum=0; ~i; i--)
    {
        int zero = 0,one = -1,j; // 还真可以是-1
        for(j=0; j<n; j++)
          switch( op[j] )
          {
              case 'A':
                zero &= t[j]; one &= t[j]; break;
              case 'O':
                zero |= t[j]; one |= t[j]; break;
              case 'X':
                zero ^= t[j]; one ^= t[j]; break;
          }
        if( zero>>i&1^1 && one>>i&1 && (sum|1<<i) <= m)
          sum |= 1<<i;
    }
    // 让贪心出来的sum再跑一遍
    for(i=0; i<n; i++)
      switch( op[i] )
      {
          case 'A':
            sum &= t[i]; break;
          case 'O':
            sum |= t[i]; break;
          case 'X':
            sum ^= t[i]; break;
      }
    printf("%d\n",sum);
    return 0;
}

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值