【BZOJ】3668 [Noi2014]起床困难综合症 贪心

110 篇文章 0 订阅
4 篇文章 0 订阅

题目传送门

题目想法好+1,贪心新技能get。

把初始值二进制拆分,分三种情况讨论:

  1. 如果当前位为0,但是经过所有操作后为1,显然这一位为0最优。
  2. 不满足情况1,如果当前位为1,经过所有操作后还是1,并且答案加上这一位没有超过m,显然这一位为1最优。证明: k1i=12i=2k1<2k
  3. 前两种情况都不满足,即这一位不管是0还是1经过所有操作后都是0,那么显然这一位为0更优,因为这样可以为之后可能要取的数空出更大的空间。

时间复杂度 O(nlog2m) ,轻松水过这题。

附上AC代码:

#include <cstdio>
using namespace std;

const int N=1e5+10;
struct note{
    char s[5];
    int x;
    inline int calc(int ret){
        switch(s[0]){
            case 'A': return ret&x;
            case 'O': return ret|x;
            case 'X': return ret^x;
        }
    }
}a[N];
int n,m,now,ans;

inline int calc(int x){
    for (int i=1; i<=n; ++i) x=a[i].calc(x);
    return x;
}

int main(void){
    scanf("%d%d",&n,&m);
    for (int i=1; i<=n; ++i) scanf("%s%d",a[i].s,&a[i].x);
    for (now=1; now<=m; now<<=1);
    for (now>>=1; now; now>>=1){
        if (calc(0)&now) continue;
        if (ans+now<=m&&calc(now)&now) ans+=now;
    }
    return printf("%d\n",calc(ans)),0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值