题目想法好+1,贪心新技能get。
把初始值二进制拆分,分三种情况讨论:
- 如果当前位为0,但是经过所有操作后为1,显然这一位为0最优。
- 不满足情况1,如果当前位为1,经过所有操作后还是1,并且答案加上这一位没有超过m,显然这一位为1最优。证明: ∑k−1i=12i=2k−1<2k 。
- 前两种情况都不满足,即这一位不管是0还是1经过所有操作后都是0,那么显然这一位为0更优,因为这样可以为之后可能要取的数空出更大的空间。
时间复杂度 O(nlog2m) ,轻松水过这题。
附上AC代码:
#include <cstdio>
using namespace std;
const int N=1e5+10;
struct note{
char s[5];
int x;
inline int calc(int ret){
switch(s[0]){
case 'A': return ret&x;
case 'O': return ret|x;
case 'X': return ret^x;
}
}
}a[N];
int n,m,now,ans;
inline int calc(int x){
for (int i=1; i<=n; ++i) x=a[i].calc(x);
return x;
}
int main(void){
scanf("%d%d",&n,&m);
for (int i=1; i<=n; ++i) scanf("%s%d",a[i].s,&a[i].x);
for (now=1; now<=m; now<<=1);
for (now>>=1; now; now>>=1){
if (calc(0)&now) continue;
if (ans+now<=m&&calc(now)&now) ans+=now;
}
return printf("%d\n",calc(ans)),0;
}