传统神经网络
卷积神经网络
卷积神经网络的基本架构
- 输入层
- 卷积层
- 池化层
最大池化:
- 全连接层
卷积神经网络参数:
- 步长:每次卷积核滑动的长度
- 卷积核尺寸:卷积核大小
- 边缘填充:通常在图像外围填充0
- 卷积核个数:等于下一层特征图通道数
卷积神经网络计算公式:
- 长度:
- 宽度:
注:为输入层宽度和长度, 为输出层宽度和长度,F表示卷积核的长和宽的大小,P为边界填充大小,S表示步长
卷积特征图变化:
经典卷积神经网络:
- AlexNet
- VGG
- 残差网络Resnet
神经网络感受野:
- 定义:卷积神经网络每一层输出的特征图上的像素点在输入图片上映射的区域大小。
- 计算公式:
注:RF表示感受野, k表示卷积核大小,s表示步长,普通卷积dilation为1,空洞卷积dilation大于1.(计算感受野时,忽略padding的影响)
- 作用:
- 感受野的值可以用来大致判断每一层的抽象层次,感受野越大,也意味着可能蕴含更为全局、语义层次更高的特征;感受野越小则表示所包含的特征越趋向于局部和细节。
- 辅助网络设计:
- 一般任务:要求感受野越大越好
- 目标检测:设置anchor要严格要求对应感受野,anchor太大或者偏离感受野都会严重影响检测性能。
- 语义分割:要求输入像素的感受野足够大,确保做出决策时没有忽略重要信息,一般越深越好。
- 在加深网络深度的同时减少参数个数。