最小圆覆盖专题总结

Minimal Circle ZOJ - 1450 

Buried memory HDU - 3007

圆覆盖的问题,也可以用模拟退火做

题意:求最小圆覆盖

https://blog.csdn.net/wu_tongtong/article/details/79362339 写得不错,有个别地方有手误

这两题一样的代码交  0ms

#include<cstdio>
#include<vector>
#include<cmath>
#include<string>
#include<string.h>
#include<iostream>
#include<algorithm>
#define PI acos(-1.0)
#define pb push_back
#define F first
#define S second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N=505;
const int MOD=1e9+7;
const double eps=1e-10;
template <class T>
bool sf(T &ret){ //Faster Input
    char c; int sgn; T bit=0.1;
    if(c=getchar(),c==EOF) return 0;
    while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
    sgn=(c=='-')?-1:1;
    ret=(c=='-')?0:(c-'0');
    while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
    if(c==' '||c=='\n'){ ret*=sgn; return 1; }
    while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
    ret*=sgn;
    return 1;
}
int sign(double x) {  //三态函数,减少精度问题
    return abs(x) < 1e-10 ? 0 : x < 0 ? -1 : 1;
}
struct Point { //点的定义
    double x, y;
    Point(double x=0.0, double y=0.0) : x(x), y(y) {}
    Point operator + (const Point &rhs) const {  //向量加法
        return Point(x + rhs.x, y + rhs.y);
    }
    Point operator - (const Point &rhs) const {  //向量减法
        return Point(x - rhs.x, y - rhs.y);
    }
    Point operator * (double p) const {  //向量乘以标量
        return Point(x * p, y * p);
    }
    Point operator / (double p) const {  //向量除以标量
        return Point(x / p, y / p);
    }
    bool operator < (const Point &rhs) const {  //点的坐标排序
        return x < rhs.x || (x == rhs.x && y < rhs.y);
    }
    bool operator == (const Point &rhs) const {  //判断同一个点
        return sign(x - rhs.x) == 0 && sign(y - rhs.y) == 0;
    }

};
typedef Point Vector;
double polar_angle(Vector A) {  //向量极角
    return atan2(A.y, A.x);
}
double cross(Vector A, Vector B) {  //向量叉积,两向量组成的三角形的有向面积的两倍,可判断两向量的方向
    return A.x * B.y - A.y * B.x;
}
Point line_line_inter(Point p, Vector V, Point q, Vector W) {  //两直线交点,参数方程
    Vector U = p - q;
    double t = cross(W, U) / cross(V, W);  //两直线有唯一交点的前提:cross(V, W)非0
    return p + V * t;
}
double dot(Vector A,Vector B){
    return A.x*B.x+A.y*B.y;
}
double length(Vector A){
    return sqrt(dot(A,A));
}
Vector rotate(Vector A, double rad) {
    return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
Point p[N];
int n;

Point get_c(Point a,Point b,Point c){
    Vector u=rotate(b-a,PI/2);
    Vector v=rotate(c-b,PI/2);
    if(sign(cross(a-c,a-b))==0){
        double ac=length(a-c);
        double bc=length(b-c);
        double ab=length(a-b);
        if(sign(ac+ab-bc)==0)   return (b+c)/2;
        if(sign(ac+bc-ab)==0)   return (a+b)/2;
        if(sign(ab+bc-ac)==0)   return (a+c)/2;
    }
    return line_line_inter((a+b)/2,u,(b+c)/2,v);
}

void Min_Cover_Circle(Point &c,double &r){
    random_shuffle(p,p+n);
    c=p[0],r=0.0;
    for(int i=1;i<n;i++){
        if(sign(length(p[i]-c)-r)>0){
            c=p[i],r=0.0;
            for(int j=0;j<i;++j){
                if(sign(length(p[j]-c)-r)>0){
                    c=(p[i]+p[j])/2.0;
                    r=length(c-p[i]);
                    for(int k=0;k<j;++k){
                        if(sign(length(p[k]-c)-r)>0){
                            c=get_c(p[i],p[j],p[k]);
                            r=length(c-p[i]);
                        }
                    }
                }
            }
        }
    }
}

int main(void){
    while(scanf("%d",&n)==1){
        if(!n)  break;
        for(int i=0;i<n;i++){
            double x,y;
            scanf("%lf%lf",&x,&y);
            p[i]={x,y};
        }
        Point c;
        double r;
        Min_Cover_Circle(c,r);
        printf("%.2f %.2f %.2f\n",c.x,c.y,r);
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值