描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树
平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
注:我们约定空树是平衡二叉树。
判断一颗二叉树是不是平衡二叉树,主要考虑是两个左右子树的高度之差绝对值不超过1。
如果用JZ38的递归实现应该也可以,把左右子数各自的深度算出来再相减,我试一下:
Ok我试不出来,以后再战(我觉得可能是我输入的树不对,换了一下对了)。我是想分别输出左右子树的深度然后在IsBalanced函数中判断,先看看我的代码:
class Solution:
def TreeDepth(self, pRoot):
if pRoot is None:
return 0
count1 = self.TreeDepth(pRoot.left) + 1
count2 = self.TreeDepth(pRoot.right) + 1
a = abs(count1-count2)
return a
def IsBalanced_Solution(self, pRoot):
if pRoot is None:
return True
a = self.TreeDepth(pRoot)
if a <= 1:
return True
else:
return False
再来看看讨论组代码:
# -*- coding:utf-8 -*-
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
res = True
def IsBalanced_Solution(self, pRoot):
# write code here
self.helper(pRoot)
return self.res
def helper(self,root):
if not root:
return 0
#表示已经有子树不是平衡二叉树,终止该次递归
if not self.res : return 1
left = 1 + self.helper(root.left)
right = 1 + self.helper(root.right)
if abs(left-right)>1:
self.res = False
return max(left,right)