题目传送门
。
解法:
很显然是棵树。
那么给定根以后所有的终止节点其实就是叶子节点。
对于任意一个节点。
在其子树中所有的叶子节点到他的距离应该是一样的。
因为所有叶子节点走到他之后后面的路程是一样的。
所以树形Dp啊。
处理出每个节点下面的叶子节点到他的最长距离。
然后其他的节点往最长距离去补就完了吧。。。
代码实现:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
struct node {int x,y,next;ll c;}a[1110000];int len,last[510000],root;
void ins(int x,int y,ll c) {len++;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;}
ll sum[510000],f[510000]; //sum表示这个节点下面的叶子节点到他的最长距离。f表示所有节点弄到路程相等所需要最少的操作次数。
void dfs(int x,int fa) {
sum[x]=f[x]=0;
for(int k=last[x];k;k=a[k].next) {
int y=a[k].y;
if(y!=fa) {dfs(y,x);sum[x]=max(sum[x],sum[y]+a[k].c);}
}
for(int k=last[x];k;k=a[k].next) {
int y=a[k].y;
if(y!=fa) f[x]+=f[y]+sum[x]-(sum[y]+a[k].c);
}
}
int main() {
int n;scanf("%d",&n);scanf("%d",&root);
len=0;memset(last,0,sizeof(last));
for(int i=1;i<n;i++) {
int x,y;ll c;scanf("%d%d%lld",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}dfs(root,0);
printf("%lld\n",f[root]);
return 0;
}