bzoj1060: [ZJOI2007]时态同步(树形Dp)

31 篇文章 0 订阅

题目传送门

解法:
很显然是棵树。
那么给定根以后所有的终止节点其实就是叶子节点。

对于任意一个节点。
在其子树中所有的叶子节点到他的距离应该是一样的。
因为所有叶子节点走到他之后后面的路程是一样的。

所以树形Dp啊。
处理出每个节点下面的叶子节点到他的最长距离。
然后其他的节点往最长距离去补就完了吧。。。

代码实现:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
struct node {int x,y,next;ll c;}a[1110000];int len,last[510000],root;
void ins(int x,int y,ll c) {len++;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;}
ll sum[510000],f[510000];  //sum表示这个节点下面的叶子节点到他的最长距离。f表示所有节点弄到路程相等所需要最少的操作次数。
void dfs(int x,int fa) {
    sum[x]=f[x]=0;
    for(int k=last[x];k;k=a[k].next) {
        int y=a[k].y;
        if(y!=fa) {dfs(y,x);sum[x]=max(sum[x],sum[y]+a[k].c);}
    }
    for(int k=last[x];k;k=a[k].next) {
        int y=a[k].y;
        if(y!=fa) f[x]+=f[y]+sum[x]-(sum[y]+a[k].c);
    }
}
int main() {
    int n;scanf("%d",&n);scanf("%d",&root);
    len=0;memset(last,0,sizeof(last));
    for(int i=1;i<n;i++) {
        int x,y;ll c;scanf("%d%d%lld",&x,&y,&c);
        ins(x,y,c);ins(y,x,c);
    }dfs(root,0);
    printf("%lld\n",f[root]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值