题目概述
有一棵有边权的有根树,现在从根开始传播JZ的神犇之力,经过一条边的时间是该边的边权。为了JZ神犇之力的平衡,要求神犇之力传播到所有叶子节点的时间相同。有一种操作是让某条边的边权增加 1 1 ,求最少的操作数使得神犇之力平衡。
解题报告
肯定是要把所有叶子节点的时间都变成最长时间叶子节点的时间,而且为了少花费,操作必然是越上面越好,所以只需要先DFS一遍记录一下 表示 i i <script type="math/tex" id="MathJax-Element-3">i</script> 子树中叶子的的最长时间,然后再DFS一遍,能操作就操作即可。
示例程序
#include<cstdio>
#include<cctype>
using namespace std;
typedef long long LL;
const int maxn=500000;
int n,ro;LL dis[maxn+5],MAX[maxn+5],ans;
int E,lnk[maxn+5],son[(maxn<<1)+5],nxt[(maxn<<1)+5],w[(maxn<<1)+5];
inline char readc(){
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
if (l==r) return EOF;return *l++;
}
#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline int readi(int &x){
int tot=0,f=1;char ch=readc(),lst='+';
while (!isdigit(ch)) {if (ch==EOF) return EOF;lst=ch;ch=readc();}
if (lst=='-') f=-f;
while (isdigit(ch)) tot=(tot<<3)+(tot<<1)+(ch^48),ch=readc();
return x=tot*f,Eoln(ch);
}
#define Add(x,y,z) son[++E]=(y),w[E]=(z),nxt[E]=lnk[x],lnk[x]=E
void Dfs(int x,int pre=0){
for (int j=lnk[x];j;j=nxt[j])
if (son[j]!=pre){
dis[son[j]]=dis[x]+w[j];Dfs(son[j],x);
if (MAX[son[j]]>MAX[x]) MAX[x]=MAX[son[j]];
}
if (dis[x]>MAX[x]) MAX[x]=dis[x];
}
void Solve(int x,int pre=0,LL tag=0){
for (int j=lnk[x];j;j=nxt[j])
if (son[j]!=pre){
LL now=MAX[ro]-MAX[son[j]]-tag;
ans+=now;Solve(son[j],x,tag+now);
}
}
int main(){
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
for (int i=(readi(n),readi(ro),1),x,y,z;i<n;i++)
readi(x),readi(y),readi(z),Add(x,y,z),Add(y,x,z);
return Dfs(ro),Solve(ro),printf("%lld\n",ans),0;
}