关于斐波那契数列的讲解

斐波那契数列是一个在数学、计算机科学等领域有广泛应用的数列,每一项都是前两项之和。本文介绍了斐波那契数列的概念,起源以及一个使用递归方法的Python代码示例,展示了如何生成并打印斐波那契序列的一部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来讲一下斐波那契数列。

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=1,F(1)=1, F(n)=F(n - 1)+F(n - 2)(≥ 2,∈ N*)在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波那契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

中文名:斐波那契数列

外文名:Fibonacci sequence

别    名:黄金分割数列、兔子数列

表达式:F[n]=F[n-1]+F[n-2](n>=2,F[0]=1,F[1]=1)

提出者:莱昂纳多·斐波那契

提出时间:1202年

适用领域:代数

应用学科:数学

定义:斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89... 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的莱昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。另外斐波那契还在计算机C语言程序题中应用广泛。

自然中的斐波那契数列:

注:以下内容来自百度

下面是实验舱的斐波那契数列的代码:

# 舞台自动重置,kpen和p可直接使用.
import random
from math import*
def Fibonacci_Recursion_tool(n):#斐波那契数列方法
	if n<=0:
		return 0
	elif n==1:
		return 1
	else:
		return Fibonacci_Recursion_tool(n-1)+Fibonacci_Recursion_tool(n-2)
def Fibonacci_Recursion(n):#生成斐波那契数列,并存入列表
	result_list=[]
	for i in range(1,n+3):
		result_list.append(Fibonacci_Recursion_tool(i))
	return result_list
yu=Fibonacci_Recursion(10)#生成斐波那契数列
print(yu)
p.draw()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值