【ML】提升树、梯度提升决策树GBDT

提升树

提升树利用加法模型与前向分布算法实现学习的优化过程。

  提升方法实际上是采用前向分布算法求解的加法模型,提升树(boosting tree)是以决策树(分类树或回归树)为基分类器的提升方法。提升树模型可以表示为决策树的加法模型:
f M ( x ) = ∑ m = 1 M T ( x ; Θ m ) f_M(x)=\sum_{m=1}^MT(x;\Theta_m) fM(x)=m=1MT(x;Θm)
其中, T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)为决策树模型,也是我们的基函数。

对比AdaBoost:AdaBoost中对每个基分类器加权求和,而这里没有各分类器的权重系数,或者说是等权重的。

  提升树采用前向分布算法。给定训练数据及损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x)),首先确定初始提升树 f 0 ( x ) = 0 f_0(x)=0 f0(x)=0,第 m m m步的模型是
f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m ) f_m(x)=f_{m-1}(x)+T(x;\Theta_m) fm(x)=fm1(x)+T(x;Θm)
其中, f m − 1 ( x ) f_{m-1}(x) fm1(x)为当前模型,通过经验风险最小化确定下一棵决策树的参数 Θ m \Theta_m Θm
Θ ^ m = arg ⁡ min ⁡ Θ m ∑ i = 1 n L ( y i , f m − 1 ( x i ) + T ( x i ; Θ m ) ) \hat{\Theta}_m=\arg\min_{\Theta_m}\sum_{i=1}^nL(y_i,f_{m-1}(x_i)+T(x_i;\Theta_m)) Θ^m=argΘmmini=1nL(yi,fm1(xi)+T(xi;Θm))
  不同的提升树的学习算法不同,其主要区别在于使用的损失函数不同:用指数损失函数的分类问题,用平方误差损失函数的回归问题,以及用一般损失函数的一般决策问题。

分类提升树(指数损失函数)

  对于二分类问题,分类提升树是AdaBoost算法的特殊情况,只需把基分类器限定成二分类决策树。

回归提升树(平方误差损失函数)

  训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} T={(x1,y1),(x2,y2),...,(xn,yn)},其中输入实例 x i ∈ X ⊆ R n x_i\in\mathcal{X}\subseteq \mathbb{R}^n xiXRn,输出 y i ∈ Y ⊆ R y_i\in\mathcal{Y}\subseteq\mathbb{R} yiYR。将输入空间 X \mathcal{X} X划分为 J J J个互不相交的区域 R 1 , R 2 , . . . , R J R_1,R_2,...,R_J R1,R2,...,RJ,并且在每个区域上确定输出的常量 c j c_j cj,则回归树可以表示为
T ( x ; Θ ) = ∑ j = 1 J c j I ( x ∈ R j ) T(x;\Theta)=\sum_{j=1}^Jc_jI(x\in R_j) T(x;Θ)=j=1JcjI(xRj)
其中,参数 Θ = { ( R 1 , c 1 ) , ( R 2 , c 2 ) , . . . , ( R J , c J ) } \Theta=\{(R_1,c_1),(R_2,c_2),...,(R_J,c_J)\} Θ={(R1,c1),(R2,c2),...,(RJ,cJ)}表示树的区域划分和各区域上的常数, J J J是回归树的复杂度即叶结点个数。
  在前向分布算法的第 m m m步,给定当前模型 f m − 1 ( x ) f_{m-1}(x) fm1(x),需求解
Θ ^ m = arg ⁡ min ⁡ Θ m ∑ i = 1 n L ( y i , f m − 1 ( x i ) + T ( x i ; Θ m ) ) \hat{\Theta}_m=\arg\min_{\Theta_m}\sum_{i=1}^nL(y_i,f_{m-1}(x_i)+T(x_i;\Theta_m)) Θ^m=argΘmmini=1nL(yi,fm1(xi)+T(xi;Θm))
得到 Θ ^ m \hat{\Theta}_m Θ^m,即第 m m m棵树的参数。
  当采用平方误差损失函数时,
L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y,f(x))=(y-f(x))^2 L(y,f(x))=(yf(x))2
损失函数变为
L ( y , f m − 1 ( x ) + T ( x ; Θ m ) ) = [ y − f m − 1 ( x ) − T ( x ; Θ m ) ] 2 = [ r − T ( x ; Θ m ) ] 2 L(y,f_{m-1}(x)+T(x;\Theta_m))=[y-f_{m-1}(x)-T(x;\Theta_m)]^2=[r-T(x;\Theta_m)]^2 L(y,fm1(x)+T(x;Θm))=[yfm1(x)T(x;Θm)]2=[rT(x;Θm)]2
这里, r = y − f m − 1 ( x ) r=y-f_{m-1}(x) r=yfm1(x)是当前模型拟合数据的残差。因此使平方误差损失函数极小的回归树 T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)应很好的拟合残差 r r r(最好是 T ( x ; Θ m ) = r T(x;\Theta_m)=r T(x;Θm)=r,损失函数值为0)。

整个过程综合来看,相当于把原始数据分成若干个数的加和,每个数用一个回归树拟合。

  文章开头就指出,我们假设的基模型是等权重的,下面探讨一下原因。假设每个基模型都有一个权重,这时候损失函数为
L ( y , f m − 1 ( x ) + α T ( x ; Θ m ) ) = [ r − α T ( x ; Θ m ) ] 2 L(y,f_{m-1}(x)+\alpha T(x;\Theta_m))=[r-\alpha T(x;\Theta_m)]^2 L(y,fm1(x)+αT(x;Θm))=[rαT(x;Θm)]2

分别关于 α \alpha α T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)求导并令导数为0,
{ α [ r − α T ( x ; Θ m ) ] = 0 T ( x ; Θ m ) [ r − α T ( x ; Θ m ) ] = 0 \begin{cases} \alpha[r-\alpha T(x;\Theta_m)]=0\\ T(x;\Theta_m)[r-\alpha T(x;\Theta_m)]=0 \end{cases} {α[rαT(x;Θm)]=0T(x;Θm)[rαT(x;Θm)]=0

显然取 α = 1 \alpha=1 α=1 T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)拟合 r r r即是一个最优解,没有必要每次都去寻找一个权重。

算法流程

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} T={(x1,y1),(x2,y2),...,(xn,yn)};回归树个数 M M M
输出:提升树 f M ( x ) f_M(x) fM(x)

  1. 初始化 f 0 ( x ) = 0 f_0(x)=0 f0(x)=0

  2. m = 1 , 2 , . . . , M m=1,2,...,M m=1,2,...,M
    a. 计算残差
    r m i = y i − f m − 1 ( x ) , i = 1 , 2 , . . . , n r_{mi}=y_i-f_{m-1}(x),\quad i=1,2,...,n rmi=yifm1(x),i=1,2,...,n
    b. 以残差 r m i r_{mi} rmi作为输入学习一个回归树(CART回归树生成),得到 T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)

    AdaBoost算法中,每个基分类器都是拟合原始数据 y y y,然后将这些基分类器的结果加权平均(权重为模型精度)。这里,每个模型都是拟合当前模型的残差。根本原因在于他们的损失函数不同。

    c. 更新 f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m ) f_m(x)=f_{m-1}(x)+T(x;\Theta_m) fm(x)=fm1(x)+T(x;Θm)

  3. 得到回归问题提升树
    f M ( x ) = ∑ m = 1 M T ( x ; Θ m ) f_{M}(x)=\sum_{m=1}^MT(x;\Theta_m) fM(x)=m=1MT(x;Θm)

梯度提升树GBDT(一般损失函数)

  梯度提升决策树(GBDT)算法是梯度提升(GB)算法限定基学习器是回归决策树时的模型,尤其是CART回归树。
  提升树利用加法模型与前向分布算法实现学习的优化过程。当损失函数是指数损失函数和平方损失函数时,每一步优化是很简单的,但对一般损失函数而言,往往每一步优化并不那么容易,Freidman提出了梯度提升(gradient boosting)算法来解决这一问题。

  由损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x)) f ( x ) = f m − 1 ( x ) f(x)=f_{m-1}(x) f(x)=fm1(x)处的泰勒展开,
L ( y , f ( x ) ) ≈ L ( y , f m − 1 ( x ) ) + [ ∂ L ( y , f ( x ) ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) ( f ( x ) − f m − 1 ( x ) ) L(y,f(x))\approx L(y,f_{m-1}(x))+\left[\frac{\partial L(y,f(x))}{\partial f(x)}\right]_{f(x)=f_{m-1}(x)}(f(x)-f_{m-1}(x)) L(y,f(x))L(y,fm1(x))+[f(x)L(y,f(x))]f(x)=fm1(x)(f(x)fm1(x))
f ( x ) = f m ( x ) f(x)=f_m(x) f(x)=fm(x)
L ( y , f m ( x ) ) ≈ L ( y , f m − 1 ( x ) ) + [ ∂ L ( y , f ( x ) ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) ( f m ( x ) − f m − 1 ( x ) ) L(y,f_m(x))\approx L(y,f_{m-1}(x))+\left[\frac{\partial L(y,f(x))}{\partial f(x)}\right]_{f(x)=f_{m-1}(x)}(f_m(x)-f_{m-1}(x)) L(y,fm(x))L(y,fm1(x))+[f(x)L(y,f(x))]f(x)=fm1(x)(fm(x)fm1(x))
L ( y , f m ( x ) ) − L ( y , f m − 1 ( x ) ) ≈ [ ∂ L ( y , f ( x ) ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) ( f m ( x ) − f m − 1 ( x ) ) L(y,f_m(x))-L(y,f_{m-1}(x)) \approx \left[\frac{\partial L(y,f(x))}{\partial f(x)}\right]_{f(x)=f_{m-1}(x)}(f_m(x)-f_{m-1}(x)) L(y,fm(x))L(y,fm1(x))[f(x)L(y,f(x))]f(x)=fm1(x)(fm(x)fm1(x))

  我们的目标是极小化 L ( y , f m ( x ) ) L(y,f_m(x)) L(y,fm(x)),经过前面 m − 1 m-1 m1次的训练,我们已经得到 f m − 1 ( x ) f_{m-1}(x) fm1(x),也就是说 L ( y , f m − 1 ( x ) ) L(y,f_{m-1}(x)) L(y,fm1(x))是常数,因此在训练第 m m m个基模型时,近似地,我们只需要极小化
min ⁡ f m [ ∂ L ( y , f ( x ) ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) ( f m ( x ) − f m − 1 ( x ) ) \min_{f_m}\left[\frac{\partial L(y,f(x))}{\partial f(x)}\right]_{f(x)=f_{m-1}(x)}(f_m(x)-f_{m-1}(x)) fmmin[f(x)L(y,f(x))]f(x)=fm1(x)(fm(x)fm1(x))

算法流程

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} T={(x1,y1),(x2,y2),...,(xn,yn)}, x i ∈ X ⊆ R n x_i\in\mathcal{X}\subseteq \mathbb{R}^n xiXRn y i ∈ Y ⊆ R y_i\in\mathcal{Y}\subseteq\mathbb{R} yiYR;损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x))
输出:回归树 f ^ ( x ) \hat{f}(x) f^(x)

  1. 初始化
    f 0 ( x ) = arg ⁡ min ⁡ c ∑ i = 1 n L ( y i , c ) f_0(x)=\arg\min_{c}\sum_{i=1}^nL(y_i,c) f0(x)=argcmini=1nL(yi,c)

估计使损失函数极小化的常数值,它是只有一个根结点的树。

  1. m = 1 , 2 , . . , M m=1,2,..,M m=1,2,..,M
    a. 对 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,计算
    r m i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r_{mi}=-\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f(x)=f_{m-1}(x)} rmi=[f(xi)L(yi,f(xi))]f(x)=fm1(x)

    计算损失函数的负梯度在当前模型的值,将它作为残差的估计。对于平方损失函数,它就是通常所说的残差;对于一般损失函数,它就是残差的近似值。

    b. 对 r m i r_{mi} rmi拟合一个回归树,得到第 m m m棵树的叶结点区域 R m j , j = 1 , 2 , . . . , J R_{mj},\quad j=1,2,...,J Rmj,j=1,2,...,J

    估计回归树叶结点区域,以拟合残差的近似值。

    c. 对 j = 1 , 2 , . . . , J j=1,2,...,J j=1,2,...,J,计算
    c m j = arg ⁡ min ⁡ c ∑ x i ∈ R m j L ( y i , f m − 1 ( x i ) + c ) c_{mj}=\arg\min_{c}\sum_{x_i\in R_{mj}}L(y_i,f_{m-1}(x_i)+c) cmj=argcminxiRmjL(yi,fm1(xi)+c)

    利用线性搜索( c i + 1 = c i + α d c_{i+1}=c_i+\alpha d ci+1=ci+αd)估计叶结点区域的值,使损失函数极小化,

    类似于平方损失函数情形,每个基分类器都是估计的前一估计器的残差,所以等权重是合理的。

    d. 更新 f m ( x ) = f m − 1 ( x ) + ∑ j = 1 J c m j I { x ∈ R m j } f_m(x)=f_{m-1}(x)+\sum_{j=1}^Jc_{mj}I\{x\in R_{mj}\} fm(x)=fm1(x)+j=1JcmjI{xRmj}

  2. 得到回归树
    f ^ ( x ) = f M ( x ) = ∑ m = 1 M ∑ j = 1 J c m j I { x ∈ R m j } \hat{f}(x)=f_M(x)=\sum_{m=1}^M\sum_{j=1}^Jc_{mj}I\{x\in R_{mj}\} f^(x)=fM(x)=m=1Mj=1JcmjI{xRmj}

一般的梯度提升算法GB

  对于加法模型
f ( x ) = ∑ m = 1 M β m b ( x ; γ m ) f(x)=\sum_{m=1}^M\beta_mb(x;\gamma_m) f(x)=m=1Mβmb(x;γm)

给出如下梯度提升算法。

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} T={(x1,y1),(x2,y2),...,(xn,yn)}, x i ∈ X ⊆ R n x_i\in\mathcal{X}\subseteq \mathbb{R}^n xiXRn y i ∈ Y ⊆ R y_i\in\mathcal{Y}\subseteq\mathbb{R} yiYR;损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x))
输出:梯度提升模型 f ( x ) f(x) f(x)

  1. 初始化
    f 0 ( x ) = arg ⁡ min ⁡ c ∑ i = 1 n L ( y i , c ) f_0(x)=\arg\min_{c}\sum_{i=1}^nL(y_i,c) f0(x)=argcmini=1nL(yi,c)
  2. m = 1 , 2 , . . , M m=1,2,..,M m=1,2,..,M(极小化损失函数、更新)
    a. 对 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,计算
    r m i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r_{mi}=-\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f(x)=f_{m-1}(x)} rmi=[f(xi)L(yi,f(xi))]f(x)=fm1(x)
    b. 利用 { r m i } \{r_{mi}\} {rmi}学习第 m m m个基分类器 b m ( x ) b_m(x) bm(x)
    d. 更新 f m ( x ) = f m − 1 ( x ) + b m ( x ) f_m(x)=f_{m-1}(x)+b_m(x) fm(x)=fm1(x)+bm(x)
  3. 得到最终的梯度提升模型
    f ( x ) = f M ( x ) = ∑ m = 1 M b m ( x ) f(x)=f_M(x)=\sum_{m=1}^Mb_m(x) f(x)=fM(x)=m=1Mbm(x)

参考:
统计学习方法—李航

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值