非参数统计中的核平滑方法/Kernel smoother

Kernel Smoother

  核函数 K h λ ( X 0 , X ) K_{h_\lambda}(X_0,X) Khλ(X0,X)定义为
K h λ ( X 0 , X ) = D ( ∣ ∣ X − X 0 ∣ ∣ h λ ( X 0 ) ) K_{h_\lambda}(X_0,X)=D(\frac{||X-X_0||}{h_\lambda(X_0)}) Khλ(X0,X)=D(hλ(X0)XX0)
其中, X , X 0 ∈ R p X,X_0\in\mathbb{R}^p X,X0Rp ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 为欧拉范数, h λ ( X 0 ) h_\lambda(X_0) hλ(X0)为参数(核半径 kernel radius), D ( t ) D(t) D(t)通常是正实值函数,关于 ∣ ∣ X − X 0 ∣ ∣ ||X-X_0|| XX0非增。
kernel function
  设 f ( x ) : R p → R f(x):\mathbb{R}^p\rightarrow \mathbb{R} f(x):RpR x x x的连续函数,样本 { ( x i , Y i ) , i = 1 , . . . , n } \{(x_i,Y_i),i=1,...,n\} {(xi,Yi),i=1,...,n}来自
Y i = f ( x i ) + ϵ i Y_i=f(x_i)+\epsilon_i Yi=f(xi)+ϵi
对任意 x 0 ∈ R p x_0\in\mathbb{R}^p x0Rp,Nadaraya-Watson核加权平均( f ( x ) f(x) f(x)的估计)定义为,
f ^ ( x 0 ) = ∑ i = 1 n K h λ ( x 0 , x i ) Y i ∑ i = 1 n K h λ ( x 0 , x i ) \hat{f}(x_0)=\frac{\sum_{i=1}^nK_{h_\lambda}(x_0,x_i)Y_i}{\sum_{i=1}^nK_{h_\lambda}(x_0,x_i)} f^(x0)=i=1nKhλ(x0,xi)i=1nKhλ(x0,xi)Yi
下面介绍几种特殊的核平滑方法。

1. Nearest neighbor smoother

  近邻平滑器的思想是:对任意的点 x 0 x_0 x0,选取其 m m m个最近邻函数值的平均值作为 f ( x 0 ) f(x_0) f(x0)的估计。具体地,
h m ( x 0 ) = ∣ ∣ x 0 − x [ m ] ∣ ∣ h_m(x_0)=||x_0-x_{[m]}|| hm(x0)=x0x[m]
其中 x [ m ] x_{[m]} x[m] x 0 x_0 x0的第 m m m个近邻,
D ( t ) = { 1 m , ∣ t ∣ ≤ 1 0 , o t h e r w i s e D(t)=\begin{cases} \frac{1}{m},\quad |t|\leq 1\\ 0,\quad otherwise\end{cases} D(t)={m1,t10,otherwise
NN
  上图中,红色的点为 x 0 x_0 x0 m m m个近邻, f ( x 0 ) f(x_0) f(x0)的估计为这些红点函数值的加权平均。
  这种方法得到的估计不是很光滑。

2. Kernel average smoother

  核平均平滑器的思想是:对任意的点 x 0 x_0 x0,选取一个常数距离 λ \lambda λ(核半径,或1维情形的窗宽),然后计算到 x 0 x_0 x0的距离不超过 λ \lambda λ的数据点的加权平均(权:离 x 0 x_0 x0越近,权重越大)作为 f ( x 0 ) f(x_0) f(x0)的估计。具体地,
h λ ( x 0 ) = λ = c o n s t a n t h_\lambda(x_0)=\lambda=constant hλ(x0)=λ=constant
D ( t ) D(t) D(t)为任一核函数。在这里插入图片描述
  对任意 x 0 x_0 x0,窗宽是固定的,每个数据点的权重由黄色区域显示。
  可以看出,这种方法得到的估计是光滑的,但是边界点函数值的估计是有偏的,这是因为在边界点处的左邻域与右邻域内的数据点不均匀导致的(只用到了单边邻域的信息)。

3. Local linear regression

  Nearest neighbor smoother与Kernel average smoother均假设 f ( x ) f(x) f(x)在很小的局部区间内是常数,因此可以通过邻域内函数值的加权平均估计函数。局部线性回归假设局部邻域内函数值是一条直线(高维情形是超平面),而不是常数(水平面),因此,局部线性回归方法首先在局部拟合一条直线,然后取 x 0 x_0 x0在这条直线上的值作为 f ( x 0 ) f(x_0) f(x0)的估计。具体地,
h λ ( x 0 ) = λ = c o n s t a n t h_\lambda(x_0)=\lambda=constant hλ(x0)=λ=constant
求解如下加权最小二乘问题(一维情形)
α 0 , β 0 = arg ⁡ min ⁡ α ( x 0 ) , β ( x 0 ) ∑ i = 1 n K h λ ( x 0 , x i ) ( Y i − α ( x 0 ) − β ( x 0 ) x i ) 2 \alpha_0,\beta_0=\arg\min_{\alpha(x_0),\beta(x_0)}\quad \sum_{i=1}^n K_{h_\lambda}(x_0,x_i)(Y_i-\alpha(x_0)-\beta(x_0)x_i)^2 α0,β0=argα(x0),β(x0)mini=1nKhλ(x0,xi)(Yiα(x0)β(x0)xi)2
f ( x 0 ) f(x_0) f(x0)的估计:
f ^ ( x 0 ) = α 0 + β 0 x 0 = ( 1 , x 0 ) ( B T W ( x 0 ) B ) − 1 B T W ( x 0 ) y \begin{aligned} \hat{f}(x_0)&=\alpha_0+\beta_0x_0\\ &=(1,x_0)(B^TW(x_0)B)^{-1}B^TW(x_0)y \end{aligned} f^(x0)=α0+β0x0=(1,x0)(BTW(x0)B)1BTW(x0)y
其中,
y = ( Y 1 , . . . , Y n ) T , W ( x 0 ) = d i a g ( K h λ ( x 0 , x i ) ) n × n y=(Y_1,...,Y_n)^T,W(x_0)=diag(K_{h_\lambda}(x_0,x_i))_{n\times n} y=(Y1,...,Yn)T,W(x0)=diag(Khλ(x0,xi))n×n

B T = ( 1 1 . . . 1 x 1 x 2 . . . x n ) B^T=\left( \begin{matrix}1&1&...&1\\ x_1&x_2&...&x_n \end{matrix}\right) BT=(1x11x2......1xn)
在这里插入图片描述
  可以看出,这种方法得到的估计是光滑的,并且边界点处的估计也是无偏的。

4. Local polynomial regression

  局部多项式回归假设局部邻域内函数是一个多项式函数,对一维情形,需极小化
α 0 , β j , 0 = arg ⁡ min ⁡ α ( x 0 ) , β j ( x 0 ) , j = 1 , . . . , d ∑ i = 1 n K h λ ( x 0 , x i ) ( Y i − α ( x 0 ) − ∑ j = 1 d β j , 0 x 0 j ) 2 \alpha_0,\beta_{j,0}=\arg\min_{\alpha(x_0),\beta_j(x_0),j=1,...,d}\quad \sum_{i=1}^n K_{h_\lambda}(x_0,x_i)(Y_i-\alpha(x_0)-\sum_{j=1}^d\beta_{j,0}x_0^j)^2 α0,βj,0=argα(x0),βj(x0),j=1,...,dmini=1nKhλ(x0,xi)(Yiα(x0)j=1dβj,0x0j)2
f ( x 0 ) f(x_0) f(x0)的估计:
f ^ ( x 0 ) = α 0 + ∑ j = 1 d β j , 0 x 0 j \hat{f}(x_0)=\alpha_0+\sum_{j=1}^d\beta_{j,0}x_0^j f^(x0)=α0+j=1dβj,0x0j

资料:
Kernel smoother
Nonparametric Local Polynomial Smoother

  • 3
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值