P型二硫化钨晶体(p-type WS2 crystals)、N型二硫化钨晶体(n-type WS2 crystals)

中文名称:P型二硫化钨晶体

英文名称:p-type WS2 crystals

晶体尺寸:3-5mm

掺杂气体:p型~1017-18cm-3(Nb掺杂剂)

材料特性:2.02eV,直接间隙半导体

晶体结构:六边形相位

单元格参数:a=b=0.317 nm,c=1.230 nm,a=b=90%y=120°

合成方法:CVT

P型半导体通常指的是掺杂有少量能够提供电子空位(称为“空穴”)的杂质的半导体。对于二硫化钨(WS2)这样的材料来说,要实现P型掺杂,通常需要引入能够提供空穴的杂质或缺陷。

在实验室研究中,科学家们通过不同的方法尝试实现P型掺杂。引入杂质或者经过处理,可以改变二硫化钨中的电子结构,使其成为P型半导体。但对于WS2这样的材料来说,实现P型掺杂并不是一件容易的事情,因为其本身的电子结构和化学性质限制了这一过程。

P型二硫化钨晶体的研究可能涉及到在二硫化钨中引入适当的杂质,以增加空穴浓度并使其变成P型半导体。然而,实现P型掺杂需要深入的材料研究和处理技术,因此在这方面的工作可能仍处于探索和发展阶段。

中文名称:N型二硫化钨晶体

英文名称:n-type WS2 crystals

性质分类:半导体

晶体尺寸:3-5mm

掺杂气体:n型~1017-18cm-3(Re或Au掺杂)

材料特性:2.02eV,直接间隙半导体

晶体结构:六边形相位

单元格参数:a=b=0.317 nm,c=1.230 nm,a=b=90%y=120°

合成方法:CVT

N型半导体是指掺杂有能够提供自由电子的杂质,这些额外的电子会增加半导体的电子密度。对于二硫化钨(WS2)这样的材料来说,要实现N型掺杂,需要引入能够提供额外电子的杂质或缺陷。

在实验室研究中,科学家们通过不同的方法尝试实现N型掺杂。引入杂质或者采用处理方法,可以改变二硫化钨中的电子结构,增加电子的数量,使其成为N型半导体。

实现N型二硫化钨晶体可能涉及在二硫化钨中引入适当的杂质,以增加电子浓度并使其变成N型半导体。然而,要成功实现N型掺杂需要深入的材料研究和精密的控制技术。因此,在这个领域的工作可能仍处于探索和发展的阶段。

相关产品:

NiI2晶体

NiTe2晶体

NiTe晶体

Pb2Bi2Se5晶体

Pb2Bi2Te5晶体

PbBi4Te7晶体

以上资料来自西安昊然生物小编JMY 2023.12.13.         
以上文中提到的产品仅用于科研,不能用于人体及其他用途。

期末大作业基于python的足球运动员数据分析源码+数据集(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于pyth
基于python开发的航迹规划系统软件+源码+项目文档+UI界面,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 航迹规划系统软件 1代码说明 该系统源代码分为算法和系统设计两部分。以下将对两部分进行分别介绍。 1.1航迹规划算法 该毕设采用的是基于深度强化学习的无人机航迹规划算法。数据集存储在Qlocal.pth和Qtarget.pth两个文件中,env.py是对环境进行三维构建与模拟,利用立方体描述建筑环境。UAV.py是对无人机的状态参数进行初始化包括坐标、方向、环境等。Replay.buffer.py中存储经验回放记忆数据。DQN神经网络模的训练参数设置以及训练是在DQN.py中进行的。然后将以上文件全部导入DQN神经网络模,该模的训练参数设置以及训练是在DQN.py中进行的。最后在watch_env.py中将训练好的DQN模放入仿真模拟环境中进行测试。 1.2系统设计 将航迹规划算法的各个文件导入test.py中,系统设计是在test.py中完成的。首先主窗口界面通过Ui_Form类中完成设计;环境配置功能在子函数function1中完成;无人机配置在子函数function4中完成;任务点配置在子函数function2中完成;航迹规划在子函数function3中完成。将四个子功能函数分别绑定在对应的主界面的功能按钮上。最后通过mian.py启动该系统界面。 2使用说明 运行该系统需要安装3.9.13版本的python,4.7.0版本的OpenCV,以及1.13.1版本的PyTorch,并在编译软件(如pycharm)中导入文件中引入的包和模块,然后编译mian.py文件启动该系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值