空穴传输光电材料、有机半导体材料:聚(3-己基噻吩)、P3HT

文章介绍了聚(3-己基噻吩)(P3HT),一种在电子器件和光伏技术中具有应用的有机半导体材料,其空穴传输性质使其适用于高速光电响应、长距离传输及恶劣环境下的稳定性。文中还提及了P3HT在太阳能电池、光电探测器和LED照明中的实际应用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚(3-己基噻吩),也被称为P3HT,是一种有机半导体材料。P3HT在电子器件、光伏技术等领域具有应用。

空穴传输光电材料具有较高的光学透过性和电导率,能够实现快速的光电响应和长距离的光电传输。此外,空穴传输光电材料的稳定性也较高,能够在高温、高湿等恶劣环境下稳定工作。空穴传输光电材料已经在太阳能电池、光电探测器、LED照明等领域得到了应用。

中文名称:聚(3-己基噻吩)

英文名称:P3HT

纯度:99.9%

存储:-20℃冷藏、密封、避光

保存时间:1年

规格:mg

包装:瓶装/袋装

【定制产品:】

酞菁类n型半导体材料

1D线型卟啉基配合物光电材料

AlGaN基深紫外激光二极管

吡哆醛基乙二胺(PLED)化合物

ITO/PVK:β-NPB:rubrene/BCP/Zn(BTZ)./Mg:Ag/Ag白色有机电致发光器件(OLED)

以上资料来自昊然生物小编JMY 2024.3.7.         
以上文中提到的产品仅用于科研,不能用于人体及其他用途。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值