聚酰亚胺-有机硅氧烷复合气凝胶

本文介绍了聚酰亚胺-有机硅氧烷复合气凝胶的高热稳定性和化学稳定性,以及其在高温隔热、化学防护和减震降噪领域的应用潜力。这种材料适用于科研,非人体使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

名称:聚酰亚胺-有机硅氧烷复合气凝胶
纯度:95%+
保存时间:1年
规格:mg/g
包装:瓶装/袋装
储藏条件:-20°C 下避光保存
用途:仅用于科研,不能用于人体

聚酰亚胺-有机硅氧烷复合气凝胶有多种性能。它有高的热稳定性,可以在高温环境下保持稳定的性能。它还有化学稳定性,可以抵抗酸、碱等强化学腐蚀。聚酰亚胺-有机硅氧烷复合气凝胶还有机械性能,如高弹性、高韧性和低压缩性等。这些性能使得聚酰亚胺-有机硅氧烷复合气凝胶成为可以用于高温隔热、化学防护、减震降噪等领域。


相关产品:

CO2活化氮掺杂炭气凝胶

Co-Mn掺杂碳气凝胶(Co-Mn/CA)

六钛酸钾晶须掺杂改性气凝胶

氮硫硼共掺杂碳气凝胶

MnO2负载氮掺杂石墨烯气凝胶

硼氮共掺杂石墨烯气凝胶(GBMC-x)

疏水亲油海绵气凝胶

锑掺杂二氧化锡气凝胶

银掺杂炭气凝胶

氮氧共掺杂活性碳气凝胶

以上资料来自昊然小编MSQ.2024.3.19

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值