Prompt Engineering 入门(二)

本文介绍了Prompt Engineering的重要性和设计原则,包括明确指令、角色提示、上下文学习和思维链。通过实例展示了如何通过角色提示和上下文信息提高模型的准确性和理解力,以及零样本思维链在推理任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何设计一个好的Prompt

在使用OpenAI的API时,Prompt是非常重要的,因为它决定了模型的输出。因此,设计一个好的Prompt是非常重要的。下面我们来看一下关于Prompt的一些设计原则。

明确指令

Prompt的设计应该与任务目标相关,并明确要求模型生成的内容。例如,在进行文本生成时,Prompt应该指导模型生成与主题相关的文本内容。一个好的Prompt应该是一个明确的指令,而不是一个问题。例如,如果要求模型生成一段关于“猫”的文本,那么一个好的Prompt应该是“猫是什么?”,而不是“猫是什么动物?”。因为前者是一个明确的指令,而后者是一个问题,模型可能会回答“猫是一种动物”,而不是“猫是一种宠物”。

下面是一个好的Prompt示例。上半部分用"""包起来的,是输入到模型(text-davinci-003)的Prompt。下半部分用绿色高亮起来的,是模型给出的competion。模型自动帮我们把电话和邮件按照我们要求的指令隐藏起来了。这是因为我们的Prompt明确给出了指令:

  1. 阅读一下销售邮件
  2. 删除识别个人身份的信息
  3. 给了例子,用"[姓名]“替换"老王”。

在这里插入图片描述

角色提示(Role Prompting)

角色提示是另外

### 提示词工程简介 提示词工程(Prompt Engineering)是指设计和优化自然语言处理模型输入的过程,旨在使这些模型能够更有效地理解和生成人类可读的语言。通过精心构建的提示语句,可以引导AI系统按照预期的方式响应。 对于初学者而言,理解提示词工程的基础在于掌握几个核心原则: - **清晰度**:确保每一个指令都是具体而明确的,减少歧义的可能性。 - **简洁性**:保持命令尽可能短小精悍,在传达必要信息的同时不增加额外负担。 - **上下文关联**:提供足够的背景资料帮助机器更好地解析意图并作出恰当反应[^1]。 ### 实践指南 为了实践上述理论,可以从简单的例子入手学习如何编写有效的提示词。比如想要让一个基于Python的数据科学库执行特定任务时,可以通过如下方式构造请求: ```python import pandas as pd data = {'year': [2018, 2019], 'value': [10, 20]} df = pd.DataFrame(data) # 使用提示词来指导操作 instruction = """ Given this DataFrame `df`, please calculate the mean value. """ print(df.mean()) ``` 这里虽然没有直接应用复杂的NLP技术,但是已经体现了基本思路——即给出明确指示以便获得所需输出。 当涉及到更加复杂的应用场景如对话机器人开发或是图像识别等领域,则可能需要用到专门训练过的大型预训练模型来进行交互式的提示调优工作。 ### 工具推荐 针对希望深入研究此领域的人士来说,选择合适的工具至关重要。考虑到易用性和功能性的平衡,Vue生态中的某些组件或许能成为不错的选择之一。例如`vue-form-wizard`提供了基于标签页的形式向导,简化了多步骤表单的设计流程;还有像`vue-stepper-component`这样的全自定义步进器部件支持Vuex状态管理且无外部依赖项,非常适合用来创建动态调整界面布局的应用程序[^2]。 尽管C/C++在底层编程方面占据重要地位,但对于大多数现代Web应用程序尤其是前端框架而言并非首选语言。因此建议专注于JavaScript/TypeScript以及相关生态系统内的资源和技术栈,这将有助于提高生产力并加快项目迭代速度[^3]。 最后值得注意的是,随着越来越多高质量开源项目的涌现,开发者们拥有了更多样化的选项去探索不同的实现路径。无论是用于后台服务端渲染还是跨平台移动客户端搭建等方面都有相应的解决方案可供参考[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值