前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
https://www.captainbed.cn/north
文章目录
1. Prompt Engineering基础概念
1.1 什么是Prompt Engineering
Prompt Engineering(提示工程)是指通过精心设计和优化输入提示(Prompt)来引导大语言模型(LLM)产生更准确、更符合预期的输出结果的技术。它本质上是一种"与AI沟通的艺术",是开发者与LLM交互的核心接口。
1.2 Prompt Engineering的重要性
- 成本效益:好的Prompt可以避免不必要的模型迭代
- 性能提升:相同模型下,优化Prompt可获得显著更好的结果
- 可控性:精确控制模型输出风格和内容
- 可解释性:清晰的Prompt使模型行为更可预测
1.3 Prompt Engineering核心要素
要素 | 说明 |
---|---|
指令(Instruction) | 明确告诉模型需要执行什么任务 |
上下文(Context) | 提供完成任务所需的背景信息 |
输入数据(Input) | 需要模型处理的实际数据 |
输出指示(Output) | 指定输出的格式、风格或其他要求 |
2. Prompt设计基础技巧
2.1 清晰明确的指令
不良示范:
告诉我关于人工智能的事情
优化版本:
请用简洁的语言向高中生解释人工智能的基本概念,包括定义、主要应用领域和未来发展趋势,限制在200字以内。
2.2 提供示例(Few-shot Learning)
# 情感分析示例
prompt = """
请判断以下评论的情感倾向,输出"正面"、"负面"或"中性":
示例1:
评论: "这部电影太精彩了,演员表演出色!"
情感: 正面
示例2:
评论: "服务很差,再也不会光顾了。"
情感: 负面
示例3:
评论: "产品一般,没什么特别之处。"
情感: 中性
现在请分析:
评论: "包装很精美,但功能不如预期。"
情感:
"""
2.3 分步思考(Chain-of-Thought)
请逐步解答以下数学问题:
问题: 如果一个果园有12棵苹果树,每棵树每年产150个苹果,其中20%会腐烂,那么每年实际可收获多少苹果?
解答步骤:
1. 计算总产量: 12棵树 × 150个/树 = 1800个苹果
2. 计算腐烂数量: 1800 × 20% = 360个
3. 计算可收获数量: 1800 - 360 = 1440个
最终答案: 每年可收获1440个苹果
3. 进阶Prompt技术
3.1 角色设定(Role Prompting)
你是一位经验丰富的米其林餐厅主厨,正在教授烹饪初学者如何制作完美的法式洋葱汤。请详细解释每个步骤,包括食材选择、烹饪技巧和常见错误避免。使用专业但易于理解的术语,并保持鼓励的语气。
3.2 思维链进阶(Tree-of-Thought)
请用树状思维分析是否应该接受一份外地工作机会:
1. 职业发展
- 晋升机会
- 技能提升
- 行业前景
2. 生活质量
- 生活成本
- 城市设施
- 气候环境
3. 人际关系
- 家庭因素
- 社交圈建立
- 伴侣影响
请为每个方面列出3个最重要的考量因素,并给出综合建议。
3.3 自洽性验证(Self-Consistency)
请回答以下问题,然后验证你的答案是否自洽:
问题: 如果所有A都是B,有些B是C,那么是否必然有些A是C?
初步回答:
验证过程:
1. 举例说明: 设A=猫,B=动物,C=狗 → 所有猫都是动物,有些动物是狗,但猫不可能是狗
2. 逻辑分析: "有些B是C"不保证这些C与A有交集
3. 结论修正: 原命题不必然成立
4. 专业领域Prompt设计
4.1 编程辅助Prompt
"""
你是一位资深Python工程师,请完成以下任务:
1. 实现一个高效的斐波那契数列生成器
2. 添加详细文档字符串说明
3. 包含类型注解
4. 添加3个测试用例
5. 分析算法时间复杂度
要求:
- 使用记忆化装饰器优化性能
- 遵循PEP8规范
- 测试用例应覆盖边界条件
"""
4.2 商业分析Prompt
你是一家知名咨询公司的数据分析总监,请分析以下电商销售数据并制作报告:
数据摘要:
- 时间范围: 2022年1月-12月
- 品类: 电子产品、家居用品、服装
- 指标: 销售额、订单量、客单价、退货率
报告要求:
1. 按季度和品类进行趋势分析
2. 识别关键增长点和问题领域
3. 提出3条可操作的改进建议
4. 包含可视化图表建议
5. 使用专业商业术语但保持简洁
格式: Markdown,包含标题、摘要、分析和建议部分
4.3 学术研究Prompt
你是一位人工智能领域的博士研究员,请完成以下文献综述任务:
研究主题: 大语言模型在医疗诊断中的应用现状
要求:
1. 综述2018-2023年的关键进展
2. 比较至少5种主要技术路线
3. 分析3个成功案例和2个失败案例
4. 指出当前主要技术挑战
5. 提出未来研究方向建议
格式要求:
- 学术论文风格,包含引用(APA格式)
- 专业术语准确
- 字数约2000字
- 包含摘要和关键词
5. Prompt优化与评估
5.1 Prompt评估矩阵
评估维度 | 说明 | 评估方法 |
---|---|---|
相关性 | 输出与任务的相关程度 | 人工评分(1-5分) |
准确性 | 事实正确性和逻辑严谨性 | 专业验证/交叉检查 |
完整性 | 覆盖所有要求方面 | 检查清单比对 |
一致性 | 多次请求的输出稳定性 | 标准差分析 |
效率 | 获得满意输出所需的尝试次数 | 实验记录分析 |
5.2 A/B测试框架
def evaluate_prompt(prompt_variations, test_cases, model):
results = []
for prompt in prompt_variations:
scores = []
for case in test_cases:
output = model.generate(prompt + case["input"])
score = evaluator(output, case["expected"])
scores.append(score)
results.append({
"prompt": prompt,
"avg_score": sum(scores)/len(scores),
"consistency": np.std(scores)
})
return sorted(results, key=lambda x: -x["avg_score"])
5.3 常见问题与解决方案
问题现象 | 可能原因 | 解决方案 |
---|---|---|
输出不完整 | 未指定长度要求 | 添加字数/条目限制 |
风格不符合预期 | 角色设定不明确 | 强化角色和语气描述 |
事实性错误 | 缺乏知识边界 | 添加"如不确定请说明"的指令 |
忽略部分要求 | 复杂指令理解困难 | 分步骤列出要求 |
输出不一致 | 随机性太高 | 调整temperature参数 |
6. 高级应用与工具
6.1 自动化Prompt工程
from langchain import PromptTemplate
from langchain.llms import OpenAI
# 创建模板化Prompt
template = """
作为一位{role},请完成以下任务:
{task}
具体要求:
{requirements}
输出格式:
{format}
"""
prompt = PromptTemplate(
input_variables=["role","task","requirements","format"],
template=template
)
# 使用模板
final_prompt = prompt.format(
role="资深金融分析师",
task="分析当前加密货币市场趋势",
requirements="包括技术分析和基本面分析",
format="Markdown报告,包含摘要、分析和预测三部分"
)
6.2 Prompt版本控制
prompt-v1.0.0
├── docs/
│ ├── requirements.md # 原始需求文档
│ └── design-notes.md # 设计思路
├── versions/
│ ├── basic.md # 基础版本
│ ├── with-examples.md # 带示例版本
│ └── role-specific.md # 角色定制版本
├── tests/
│ ├── test-cases.json # 测试用例
│ └── evaluation.md # 评估结果
└── CHANGELOG.md # 版本变更记录
6.3 常用工具推荐
- OpenAI Playground:交互式Prompt测试环境
- LangChain:构建复杂Prompt工作流
- Promptfoo:Prompt版本比较和评估
- Dust.tt:团队协作Prompt设计平台
- Scale Spellbook:企业级Prompt工程平台
7. 未来发展趋势
- 多模态Prompt:结合图像、音频等非文本输入
- 自适应Prompt:根据对话历史动态调整
- 可解释Prompt:可视化模型对Prompt的响应机制
- 自动化优化:基于强化学习的Prompt自动生成
- 领域专业化:垂直行业的Prompt模式库
8. 最佳实践总结
- 从简单开始:先构建基础Prompt再逐步复杂化
- 明确优先:最重要的指令放在最前面
- 分而治之:复杂任务分解为多个子Prompt
- 持续迭代:建立评估和优化循环
- 文档记录:维护Prompt变更日志和测试结果
通过系统学习和实践Prompt Engineering,开发者可以充分释放大语言模型的潜力,构建更智能、更可靠的AI应用。记住,好的Prompt设计是艺术与科学的结合,需要持续的实践和 refinement。