C语言 AVL平衡二叉查找树 插入/删除/遍历/查找

本文介绍了C语言实现AVL树的详细过程,包括AVL树的结构、旋转操作(LL旋转、RR旋转、RL旋转、LR旋转)、插入和删除节点的代码实现,以及插入和删除后的图解操作,如前序、中序和后序遍历。通过实例展示了如何保持AVL树的平衡,确保查找、插入和删除操作的时间复杂度为O(logn)。
摘要由CSDN通过智能技术生成

AVl树:平衡二叉查找树,树中任何节点的两个子树的高度最大差别为1。如下图所示

AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。

1. AVL树的结构

    typedef struct AVLTreeNode{
    Type key;                    // 关键字(键值)
    int height;                     //当前节点高度
    struct AVLTreeNode *left;    // 左孩子
    struct AVLTreeNode *right;    // 右孩子
}Node, *AVLTree;

2 AVL树的旋转操作

2.1 LL旋转

      LL旋转:左单旋。也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。如图所示:

 

     RR旋转:右单旋。也称为"右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。如图所示:

    RL旋转:右双旋转。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。如图所示:

 

    LR旋转:左双旋转。根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。如图所示

3 代码实现:

先看avltree.h文件

#ifndef _AVL_TREE_H_
#define _AVL_TREE_H_

//AVL: 平衡二叉树
typedef int Type;

typedef struct AVLTreeNode{
	Type key;                    // 关键字(键值)
	int height;					 //当前节点高度
	struct AVLTreeNode *left;    // 左孩子
	struct AVLTreeNode *right;    // 右孩子
}Node, *AVLTree;

// 获取AVL树的高度
int avltree_height(AVLTree tree);

// 前序遍历"AVL树"
void preorder_avltree(AVLTree tree);
// 中序遍历"AVL树"
void inorder_avltree(AVLTree tree);
// 后序遍历"AVL树"
void postorder_avltree(AVLTree tree);

void print_avltree(AVLTree tree, Type key, int direction);

// (递归实现)查找"AVL树tree"中键值为key的节点
Node* avltree_search(AVLTree tree, Type key)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值