AVl树:平衡二叉查找树,树中任何节点的两个子树的高度最大差别为1。如下图所示
AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。
1. AVL树的结构
typedef struct AVLTreeNode{
Type key; // 关键字(键值)
int height; //当前节点高度
struct AVLTreeNode *left; // 左孩子
struct AVLTreeNode *right; // 右孩子
}Node, *AVLTree;
2 AVL树的旋转操作
2.1 LL旋转
LL旋转:左单旋。也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。如图所示:
RR旋转:右单旋。也称为"右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。如图所示:
RL旋转:右双旋转。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。如图所示:
LR旋转:左双旋转。根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。如图所示
3 代码实现:
先看avltree.h文件
#ifndef _AVL_TREE_H_
#define _AVL_TREE_H_
//AVL: 平衡二叉树
typedef int Type;
typedef struct AVLTreeNode{
Type key; // 关键字(键值)
int height; //当前节点高度
struct AVLTreeNode *left; // 左孩子
struct AVLTreeNode *right; // 右孩子
}Node, *AVLTree;
// 获取AVL树的高度
int avltree_height(AVLTree tree);
// 前序遍历"AVL树"
void preorder_avltree(AVLTree tree);
// 中序遍历"AVL树"
void inorder_avltree(AVLTree tree);
// 后序遍历"AVL树"
void postorder_avltree(AVLTree tree);
void print_avltree(AVLTree tree, Type key, int direction);
// (递归实现)查找"AVL树tree"中键值为key的节点
Node* avltree_search(AVLTree tree, Type key)