堆是一棵完全二叉树,是用数组存放的。层序遍历存到数组中,用数组模拟。很有意思、

大顶堆,小顶堆。

5个要点就是 调整,建堆,插入,删除,排序。

时间复杂度O(logn)

1)调整

const int maxn = 100;
int heap[maxn], n = 10;

void downAdjust(int low, int high){
	int i = low, j = i * 2;
	while( j <= high ){
		if( j + 1 <= high && heap[j + 1] > heap[j]){
			j = j + 1;
		}
		if(heap[j] > heap[i]){
			swap(heap[i], heap[j]);
			i = j;
			j = i * 2;
		}else{
			break;
		}
	}
}

2)建堆

void createHeap(){
	for(int i = n/2; i >= 1; i--){	//O(n) 从n/2处开始调整
		downAdjust(i, n);
	}
}

3)删除堆顶元素

void deleteTop(){
	heap[1] = heap[n--];	
	downAdjust(1, n); 	//从头向下调整 
}

4)添加元素,我们肯定是添加到数组的末尾,然后进行调整。并且是从这个点开始向上进行调整。向上调整总是把欲调整的结点与父亲的结点比较,如果权值不父亲结点大,那么就交换其与父亲结点,这样反复比较,直到达到堆顶或是父亲结点较大为止(大顶堆)。

时间复杂度O(logn);

void upAdjust(int low, int high){
	int i = high, j = i / 2;	//i为欲调整(插入)结点,j为其父亲 
	while(j >= low){
		if(heap[j] < heap[i]){
			swap(heap[j], heap[i]);
			i = j;
			j = i / 2;
		}else{
			break;
		}
	}
}
void insert(int x){
	heap[++n] = x;
	upAdjust(1, n);
}

5)堆排序

void heapSort(){
	createHeap(); 	//	建堆 
	for(int i = n; i > 1; i--){
		swap(heap[i], heap[1]);		//交换i 与堆顶位置, 
		downAdjust(1, i - 1); 	//调整堆 
	} 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值