POJ1845 A^B的因子和mod 9901

3 篇文章 0 订阅
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
/*
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
*/
//#include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define LL long long
#define mod 9901
/*
int pnum=0;
bool isPri[Maxn];int pri[Maxn];
void Prime(int N){
	memset(isPri,true,sizeof(isPri));
	for (int i=2;i<=N;i++){
		if (!isPri[i]) else continue;
		pri[++pnum]=i;
		for (int j=i*i;j<=N;j+=i)
			isPri[j]=false;
	}
}
*/
void exgcd(LL a,LL b,LL &x,LL &y,LL &d){
	if (b==0){
		x=1,y=0,d=a;
		return ;
	}
	exgcd(b,a%b,y,x,d);
	y-=a/b*x;
}
LL Inv(LL a){
	LL x,y,d;
	exgcd(a,mod,x,y,d);
	if (a==mod)
	if (d!=1) return -1;
	return (x%mod +mod)%mod;
}
LL pow2(LL x,LL y){
	if (y==1) return x;
	if (y==0) return 1;
	LL tmp=pow2(x,y/2);
	if (y&1) return tmp*tmp %mod *x %mod;
	else return tmp*tmp %mod;
}
LL work(LL x,LL y){
	if (x==1) return (y+1)%mod;
	if (x==0) return 1;
	LL ret=(pow2(x,y+1)-1) * Inv(x-1) %mod;
	return ret;
}
int a[100],b[100];
int main(){
	LL A,B;
	while (~scanf("%lld%lld",&A,&B)){
		int top=0;
		memset(b,0,sizeof(b));
		for (int i=2;i*i<=A;i++){
			if (A%i==0) a[++top]=i;
			while (A%i==0) A/=i,b[top]++;
		}
		if (A!=1) a[++top]=A,b[top]++,A=1;
		LL ans=1;
		for (int i=1;i<=top;i++){
			LL sum=work(a[i]%mod,B*b[i]);
			ans*=sum;ans%=mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值