# poj_1845_ 求所有a^b的所有因子和

Sumdiv

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).

a=(p1^k1)*(p2^k2)………;
p是素数,k是这个数最多能被除几次;

(1+2+……..k1)*(1+2+……….k2)……….

(1+p1^1+…..p1^k1)*(1+p2^2+…..p2^k2)……………..;
a^b=(p1^k1*b)*(p2^k2*b)…..;
1+p1^1+…..p1^k1这就是一个等比数列 分奇偶讨论 提通项 减少次方数求解;

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const ll mod=9901;
ll solve(ll a,ll b)
{
ll ans=1;
a%=mod;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans%mod;
}
ll sum(ll a,ll n)
{
if(!n) return 1;
else if(n&1) return sum(a,n/2)*(1+solve(a,n/2+1))%mod;
else  return sum(a,n/2-1)*(1+solve(a,n/2+1))%mod+solve(a,n/2)%mod;
}
int main()
{
ll a,b,i,j;
while(cin>>a>>b)
{
if(b==0||a<=1)
{
puts("1");
continue;
}
ll ans=1;
ll n=(ll)sqrt(a+0.5);
for(i=2; i<=n; i++)
{
if(a%i==0)
{
ll cnt=0;
while(a%i==0)
{
cnt++;
a/=i;
}
ans=ans*sum(i,cnt*b)%mod;
}

}
if(a>1)
ans=ans*sum(a,b)%mod;
cout<<ans<<endl;
}
return 0;
}