Kruskal算法求解最小生成树

Kruskal 算法的思路还是非常的简单的

  1. 先将所有的边都用一个结构体存起来
  2. 经所有的边按照权重排序即可(因为我们要求的其实就是极小连通子图,所以我们排序后可以直接对边进行连接即可,因为我们将所有的点都放入集合后,得到的边权之和一定是最小的)
  3. 最后就是函数内部实现,既然我们谈到了 集合中,那么如何判断这个点是否在集合内部呢? 这是我们就可以使用并查集这个算法了。
//并查集
int find(int x)
{	
	if(x != p[x]) return p[x] = find(p[x]);//路径压缩
}

接下来就是Kruskal算法

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;
const int N = 2e5+10;

struct edge{
  int a,b,w;  
}ed[N];

int p[N];

bool cmp(edge e , edge f)
{
    return e.w < f.w;
}

int n , m;

int find( int x )
{
    if(p[x] != x ) return p[x] = find(p[x]);
}

int kruskal()
{
    for( int i = 1 ; i <= n ; i++ ) p[i] = i;
    
    int res = 0 , cnt = 0;
    for( int i = 0 ; i < m ; i++ )
    {
        int a = ed[i].a , b = ed[i].b , w = ed[i].w;
        int  x = find(a) , y = find(b);
        if(x != y )
        {
            cnt++;
            p[x] = y;
            res += w;
        }
    }
    if( cnt < n - 1 ) return 0x4f4f4f4f;
    else return res;
}
int main()
{
    scanf("%d%d", &n, &m);
    
    for( int i = 0 ; i < m ; i ++ )
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        ed[i] = { a , b , w };
    }
    sort(ed,ed+m,cmp);
    int ans = kruskal();
    if( ans == 0x4f4f4f4f ) puts("impossible");
    else printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

He_xj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值