Kruskal算法求最小生成树

本文介绍了Kruskal算法的详细步骤,并提供了简单的实现,帮助理解如何利用该算法求解最小生成树。
摘要由CSDN通过智能技术生成

Kruskal算法简单实现如下:

void Kruskal(V,T){
	T=V;						//初始化树T,仅含顶点
	numS=n;						//连通分量数
	while(numS>1){				//连通分量数>1
		//从E中取出权值最小的边(v,u)
		if(v和u属于不同连通分量){
			T=T∪{(u,v)};		//将边加入树中
			numS--;				//连通分量数--
		}
	}	
}

kruskal算法实现过程:
在这里插入图片描述
具体实现:

//储存各条边的信息
struct ed{
	int Head;			//头结点
	int Tail;			//尾节点
	int lowcost;		//权值
}Edge[MVNum];

//邻接矩阵
typedef struct{
	//int vex[MVNum];
	int arc[MVNum][MVNum];
	int vexnum, arcnum;
}AMGraph;

int LocateVex(AMGraph *G,VerTexType v){
	for(int i=0;i<G->vexnum;i++){
		if(G->vex[i]==v)
			return i;
	}
	return -1;
}
 
int CreateGraph()
{
	MGraph* G;
 	G->vexnum=x;
    G->arcnum=x;
	//初始化为无穷
    for(i=0;i<G->vexnum;i++){
        for(j=0;j<G-
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值