埃森哲杯第十六届上海大学程序设计联赛春季赛暨上海高校金马五校赛 F-1 + 2 = 3?【规律】【斐波那契】

题目描述 
小Y在研究数字的时候,发现了一个神奇的等式方程,他屈指算了一下有很多正整数x满足这个等式,比如1和2,现在问题来了,他想知道从小到大第N个满足这个等式的正整数,请你用程序帮他计算一下。
(表示按位异或运算)
输入描述:
第一行是一个正整数,表示查询次数。
接着有T行,每行有一个正整数,表示小Y的查询。


输出描述:
对于每一个查询N,输出第N个满足题中等式的正整数,并换行。
示例1
输入


4
1
2
3
10
输出


1
2
4

18

#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;

int main()
{
		int count = 0;
		for (int i=0; i<100; i++){
			int k = i << 1; int z = k ^ i;
			if (z == i*3){
				cout << count++ << " . " << i << endl;
			} 
		} 
}
打表找规律,发现在f[1]=1,f[2] =2,的斐波那契序列项上答案为2^(斐波那契序列号 - 1),剩余数继续寻找最近的斐波那契数;

但是在二分查找的时候,low_bound返回的是>=查找数的第一个数,所以这里的斐波那契序列要做改动,改为查找原斐波那契序列的前一项,具体实现看代码;

打表和ac的码如下;

/**
school: hrbust
team: Night_watch!
member: HeadHard
**/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll f[100];
int main()
{
    f[0] = 0;
    f[1] = 1;
    for(int i = 2; i <= 60; i++)
        f[i] = f[i - 1] + f[i - 2] + 1;
    int N;
    scanf("%d", &N);
    while(N--)
    {
        ll x, y = 0;
        scanf("%lld", &x);
        while(x)
        {
            int t = lower_bound(f, f + 60, x) - f;
            y |= ((ll)1 << (t - 1));
            x -= f[t - 1] + 1;
        }
        printf("%lld\n", y);
    }
    return 0;
}

阅读更多
个人分类: 规律
上一篇埃森哲杯第十六届上海大学程序设计联赛春季赛暨上海高校金马五校赛 L-K序列 【dp】
下一篇埃森哲杯第十六届上海大学程序设计联赛春季赛暨上海高校金马五校赛 A-Wasserstein Distance【暴力】
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭