题意:
给出一个数k,问前k个斐波那契数相加得不到的数最小是几。
思路:
手推前几项,发现是第2*(k+1)+1个斐波那契数减一的值。
所以,用矩阵快速幂求解即可
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int mod = 998244353;
typedef long long ll;
struct Matrix
{
ll a[4][4];
int n,m;
Matrix() {}
Matrix(int _n,int _m)
{
n = _n ;
m = _m;
memset(a,0,sizeof a);
}
Matrix operator *(const Matrix &b)const
{
Matrix res(n,b.m);
for(int i = 0; i< n; i++)
{
for(int j =0; j<b.m ; j++)
{
for(int k = 0; k<m; k++)
{
res.a[i][j] = (res.a[i][j]+a[i][k] * b.a[k][j] % mod)%mod;
}
}
}
return res;
}
};
Matrix qpow(Matrix x, int n)
{
Matrix res(x.n,x.n);
for(int i =0 ; i<x.n ; i++)
res.a[i][i] = 1;
while(n)
{
if(n&1)
{
res = res*x;
}
x = x*x;
n >>= 1;
}
return res;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int k = 2*(n+1);
Matrix op(2,2);
Matrix ans(2,1);
op.a[0][0] = op.a[0][1] = op.a[1][0] =1;
op.a[1][1] = 0;
ans.a[0][0] = 1;
ans.a[1][0] = 0;
op=qpow(op,k);
ans = op*ans;
printf("%lld\n",(ans.a[0][0]-1+mod)%mod);
}
return 0;
}