题意:
给一个无向图,N(0-100)个顶点,M(0-1000)条边,求图中顶点数为S(1-10)的完全图(任意两个顶点都有一条边相连)的个数。
思路:
最开始还以为是环,这锅sls得背啊哈哈哈哈。
题解都在注释里了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <iterator>
using namespace std;
const int maxn = 100+10;
int n,m,s;
vector<int> node[maxn];
int vis[maxn];
bool mark[maxn][maxn];
long long ans=0;
void dfs(int i,int cnt)
{
if(cnt==s)
{
ans++;
return;
}
for(int j=0; j<node[i].size(); j++)//因为之前的处理,这里加入的点编号一定比i大,所以会减少不必要搜索,而且不会重复。这是最重要的优化!!
{
int no=node[i][j]; //i相邻点的编号
bool flag=1;
for(int l=1; l<=cnt; ++l)
{
if(mark[no][vis[l]]==0)//新加入的点必须与原图任意一点都相连,否则不是完全图
{
flag=0;
break;
}
}
if(flag)
{
vis[cnt+1]=no;//加入新点
dfs(no,cnt+1);
vis[cnt+1]=0;
}
}
return ;
}
int main()
{
int t,st,ed;
scanf("%d",&t);
while(t--)
{
memset(mark,0,sizeof mark);
ans=0;
scanf("%d%d%d",&n,&m,&s);
for(int i=0; i<maxn; i++)
{
node[i].clear();
}
for(int i=0; i<m; i++)
{
scanf("%d%d",&st,&ed);
if(st>ed) //node[i]只存编号比i大的点得编号
node[st].push_back(ed);
else
node[ed].push_back(st);
mark[st][ed]=1;//标记这条边存在
mark[ed][st]=1;
}
for(int i=1; i<=n; i++)
{
vis[1]=i;
dfs(i,1);//以i为起点的点的个数为s的完全图的个数
vis[1]=0;
}
printf("%lld\n",ans);
}
return 0;
}