企业中数据存储方案泛讲

对企业中常见的存储方案做一下简要介绍

毕业之后就没有更新博客了,后面要陆续捡起来了,hhhhhhhhhhhhh…

存储DB

  1. TiDB相比mysql大数据量下避免分库分表降低业务复杂度,支持分布式事务,高度兼容Mysql5.7,高并发能力一般达不到nosql那种,qps也不如mysql。
  2. Hive 高可用,mapreduce计算引擎,查询慢,数据不能修改,只能追加。
  3. Impala 基于Hive抛弃MR自己做内存引擎,查询快(秒级),缺点内存要求高并行有限。
  4. Hbase 分布式,易扩展,高可用,高并发写入,高并发查询稍慢需要缓存系统支撑,不支持sql,Rowkey设计巧妙。
  5. Kudu (Hive+Hbase),可结合impala进行sql查询(OLAP), 实时读写功能,实时能力比hbase弱,写入性能高,批量模式写入可达百万级QPS,缺点:单记录模式写入,稳定性,高并发读取。
  6. Kylin Cube预计算(亚秒级) 支持RestApi,方便与BI整合(superset),缺点:维度不能太多防止cube爆炸。
  7. mongo 结构随意调整,性能优越,海量数据, 缺点不支持连表,不支持事务(最终一致),自身mapreduce慢,复杂计算依靠spark,不适合数据分析场景。
  8. redis 读写性能高,数据持久化,结构丰富,主从复制, 缺点:容量有限,扩容困难需要提前预估好容量,无法连表查询,复杂OLAP需要Spark,redis cluster比单机性能要差一些(分布式hash计算等消耗)。
  9. couchbase 高可用,自带console运维方便,读写非常快,文档存储水平伸缩,缺点:value类型单一,资料少排查难。
  10. ES 日志分析经常用,全文检索,插件化,成熟的ELK日志分析平台 缺点:磁盘和内存消耗大,修改字段需要重新建立索引。

没有十全十美的数据存储,一定会有所倾重,就像不会同时兼得olap和oltp特性,因为本身就是背道而驰的,所以db方案选取合适自己的业务最重要了。

待详细补充各数据库细节。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值