典型工业企业大数据平台解决方案(含数据治理)

本文介绍了工业企业大数据平台的建设思路,旨在通过整合PLC、MES等系统数据,建立全业务数据中心,实现数据按需服务和可视化。平台遵循实用、可靠、先进、标准、开放的方针,提供财务效益、市场分析、成本毛利等多种决策支持,并采用先进的技术架构,确保数据质量和安全。同时,提出了数据架构、可视化设计和大数据中心建设方案,强调数据治理的重要性。
摘要由CSDN通过智能技术生成

一、总体思路

当前,工业企业产生的数据日与俱增,如何利用大数据为企业产生驱动力、竞争力成为工业企业面临的重要问题。工业企业大数据平台建设的总体思路是将现有PLC、MES、ERP、CRM、SRM、SCM、电子商务及财务共享服务等信息系统的业务数据,采用大数据技术,抽取到全业务数据中心,建立逻辑关联,整合成大数据仓库。从战略任务分解、经营计划执行和风险全周期管控,对集团的供应链服务数据、经营管理数据和生产过程数据,在全业务数据中心的支持下,建立基于业务流程数字化管控链条,打通现有信息系统的壁垒,让各级管理者和一线业务人员,能够及时获取历史数据和实时数据。想看到什么数据就能看到什么数据,实现数据按需服务,达到数据可视化,具备管理驾驶舱、报表和智能化查询的全业态数据一体化服务。

二、方针和原则

1、建设方针

工业大数据分析平台按照“实用、可靠、先进、标准、开放”的方针进行建设。

实用就是工业大数据分析平台的建设是要为经营管理提供洞察的,要具有实用价值;

可靠就是工业大数据分析平台提供的数据必须是准确的,提供的分析依据是可靠的;

先进就是工业大数据分析平台要具备前瞻性,可以快速响应未来数据形态变化的需求;

标准就是工业大数据分析平台要实现数据、接口、服务、集成的标准化,具有可扩展性;

开放就是工业大数据分析平台要能够管理和处理内部数据和外部数据,具有开放特性。

2、建设原则

工业大数据分析平台的建设原则是:

整体规划、分步实施;

统一标准、强化管理;

信息公开、资源共享;

需求主导、保障安全;

自上而下设计,自下而上集成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值