深度学习训练中有关理论的名词

1. MovingAverage

我以前以为的是只有loss需要做Moveing Average, 如下面这个做Moving Average的例子

# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')

但是,其实不是的,我认为的是不对的。

1.2 对trainable variables进行moving averages

variable_averages = tf.train.ExponentialMovingAverage(moving_average_decay, global_step)
# 意思是:已经定义了一个可以进行ExponentialMovingAverage的object.但是,还没用这类对象对应的方法。
 variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 这才用了方法,这才有了真正的variable averages的操作。

返回的东西:(Returns)

If no summaries were collected, returns None. Otherwise returns a scalar Tensor of type string containing the serialized Summary protocol buffer resulting from the merging. 是字符串描述的一系列Summary protocol buffer(描述了具体怎么合并,合并了哪些个!).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值