一 神经网络模型训练及不同模型对比
1. Tensorflow程序解决MNIST手写数字识别问题
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
INPUT_NODE = 784 #输入层的节点数,本程序中为图片的像素
OUTPUT_NODE = 10 #输出层的节点数,等于类别的数目
LAYER1_NODE = 500 #隐藏层节点数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8 #基础的学习率
LEARNING_RATE_DECAY = 0.99 #学习率的衰减率
REGULARIZATION_RATE = 0.0001 #描述模型复杂度的正则化项在损失函数中的系数
TRAINNING_SETPS = 30000 #训练轮数
MOVING_AVERAGE_DECAY = 0.99 #滑动平滑衰减率
def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
#当没有提供滑动平均类时,直接使用当前的参数值
if avg_class ==None:
#计算隐藏层的前向传播结果,使用relu激活函数
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
#先用avg_class.average函数来计算得出变量的滑动平均值,然后再计算神经网络的前向传播结果
else:
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
#生成隐藏层的参数
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
#生成输出层的参数
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(x, None, weights1, biases1, weights2, biases2)
#定义存储训练轮数的变量,指定其为不可训练的变量(trainable=Fasle)
#在训练神经网络时,一般会将代表训练轮数的变量指定为不可训练的参数
global_step = tf.Variable(0, trainable=False)
#给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
#计算使用了滑动平均之后的前向传播结果
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)
#计算交叉熵作为刻画预测值和真实值之间差距的损失函数
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
#计算在当前batch中所有样例的交叉熵平均值
cross_entropy_mean = tf.reduce_mean(cross_entropy)
#计算L2正则化损失函数
regualrizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
#计算模型的正则化损失函数。一般只计算神经网络边上权重的正则化损失,而不用偏置项
regularization = regualrizer(weights1) + regualrizer(weights2)
#总损失等于交叉熵损失和正则化损失的和
loss = cross_entropy_mean + regularization
#设置指数衰减的学习率
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, globa