Tensorflow——MNIST数字识别问题

本文介绍了使用Tensorflow解决MNIST手写数字识别问题,探讨了不同神经网络模型的效果对比,包括隐藏层、激活函数的影响。此外,详细讲解了Tensorflow中的变量管理与模型持久化,包括保存与加载模型的机制,以及最佳实践样例程序。
摘要由CSDN通过智能技术生成

一 神经网络模型训练及不同模型对比

1. Tensorflow程序解决MNIST手写数字识别问题

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

INPUT_NODE = 784   #输入层的节点数,本程序中为图片的像素
OUTPUT_NODE = 10   #输出层的节点数,等于类别的数目

LAYER1_NODE = 500   #隐藏层节点数
BATCH_SIZE = 100

LEARNING_RATE_BASE = 0.8   #基础的学习率
LEARNING_RATE_DECAY = 0.99   #学习率的衰减率

REGULARIZATION_RATE = 0.0001   #描述模型复杂度的正则化项在损失函数中的系数
TRAINNING_SETPS = 30000   #训练轮数
MOVING_AVERAGE_DECAY = 0.99   #滑动平滑衰减率

def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
    #当没有提供滑动平均类时,直接使用当前的参数值
    if avg_class ==None:
        #计算隐藏层的前向传播结果,使用relu激活函数
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2
    #先用avg_class.average函数来计算得出变量的滑动平均值,然后再计算神经网络的前向传播结果
    else:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)


def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    
    #生成隐藏层的参数
    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    #生成输出层的参数
    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    y = inference(x, None, weights1, biases1, weights2, biases2)

    #定义存储训练轮数的变量,指定其为不可训练的变量(trainable=Fasle)
    #在训练神经网络时,一般会将代表训练轮数的变量指定为不可训练的参数
    global_step = tf.Variable(0, trainable=False)
    #给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    #计算使用了滑动平均之后的前向传播结果
    average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)
    #计算交叉熵作为刻画预测值和真实值之间差距的损失函数
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    #计算在当前batch中所有样例的交叉熵平均值
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    #计算L2正则化损失函数
    regualrizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    #计算模型的正则化损失函数。一般只计算神经网络边上权重的正则化损失,而不用偏置项
    regularization = regualrizer(weights1) + regualrizer(weights2)

    #总损失等于交叉熵损失和正则化损失的和
    loss = cross_entropy_mean + regularization
    #设置指数衰减的学习率
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, globa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值