0. Abstract
本文提供了在deep feature learning的成对相似度优化的视角,(是去找对么?)旨在最大化类内相似性 s p s_p sp并且最小化类间相似性 s n s_n sn。 让同一类的更紧凑,让不同类的更分开。这和我们之前的描述换个说法而已,本质都一样。
但是,他们说大多数loss functions,就好比如:
the softmax cross entropy loss和the triplet loss是把正样本和负样本嵌入成相似对,(怎么还能把正负样本放到一起形成相似对?)然后寻求去减少两者的距离。不太对啊, 感觉应该让 s n − s p s_n-s_p sn−sp越来越大才好。
作者怎么得出这个结论的,数学依据是啥? 应该先去弄懂单个 s n 或 者 s p s_n或者s_p sn或者sp

之前the softmax cross entropy loss(在Introduction里面还写到了他的variants)和the triplet loss的问题在于这种优化方式不够灵活,因为在every single similarity score的惩罚强度都被限制为是等同的。完全没懂这话说了个什么意思
这种优化方式是不灵活的,因为每个相似度得分的惩罚强度
限制为相等.

我们的直觉是,如果相似性评分偏离最佳值,则应予以强调。什么样子算是偏离最佳值。最后,我们简单re weight调整权重每个相似性each similarity to 突出这欠优的相似性分数。
为此,我们只需将每个相似度重新加权即可突出显示未优化的相似性得分。
数学上怎么表示相似性得分,另外,啥样算是欠优。给我的感觉就是更有针对性了,因为未优化的得到强调。

为啥叫Circle loss呢? 因为是圆形的决策边界。

对两个基本的深度特征学习paradigms范式有着统一的公式,即
- learning with class-level labels 使用类级别标签
- pair-wise labels 使用成对标签 这种监督我还不太熟悉
Circle loss具有两个基本的深度特征学习范例的统一公式,即使用类级标签和成对标签进行学习。 从分析上来说, 我们表明,圆损失为实现更明确的收敛目标提供了一种更灵活的优化方法,与优化 s n − s p s_n-s_p sn−sp的损失函数相比。
1. Introduction
holds a similarity optimization view(什么意思?)
能解决两种范式
- learning from data with class-level labels.
- from data with pair-wise labels.

对于前者,是在优化样本和权重向量之间的相似性,也就是优化
x i x_i xi和 W W W之间的相似性
对于后者,是用一个metric loss function(去刻画去度量),也就是衡量样本之间。

代表着,代表着,代表着, s p s_p sp代表属于同一类的样本之间的相似性,也就是说是多于一个个体的一种距离,而不是单个个体。
从他们要去优化相似性的角度分析,

下面这段文字的描述很不清晰,容易把相似性和样本的符号相互混淆。

为啥有这么个公式 s n − s p s_n-s_p sn−sp?
不就是应该直接让 s n s_n sn越小, s p s_p sp越大就好了么?
为了同时,为了让数学上更简洁合理,所以,去让 s n − s p s_n-s_p sn−sp越小。应该是相似性都是正数的前提下,因为只有 s n s_n sn越小, s p s_p sp越大才能使得 s n − s p s_n-s_p sn
最低0.47元/天 解锁文章
1888

被折叠的 条评论
为什么被折叠?



