c++ AVLTree平衡二叉搜索树

AVL树

前言

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。


一、AVL是什么?

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

二、满足条件

1.它的左右子树都是AVL树

2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

三、实现AVL树

#pragma once

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf;//平衡因子

	pair<K, V> _kv;

	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		//1.先按搜索树的规则进行插入
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
				break;
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				if (parent->_bf == 2)
				{
					if (cur->_bf == 1)
						RotateL(parent);
					else if (cur->_bf == -1)
						RotateRL(parent);
				}
				else if (parent->_bf == -2)
				{
					if (cur->_bf == 1)
						RotateLR(parent);
					else if (cur->_bf == -1)
						RotateR(parent);
				}
				break;
			}
			
		}
		return true;

	}


	//左旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		subR->_left = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subR;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			subR->_parent = ppNode;
			if (ppNode->_left==parent)
				ppNode->_left = subR;
			else
				ppNode->_right = subR;
		}
		parent->_bf = subR->_bf = 0;
	}

	//右旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}
		subL->_right = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			subL->_parent = ppNode;
			if (ppNode->_left == parent)
				ppNode->_left = subL;
			else
				ppNode->_right = subL;
		}
		parent->_bf = subL->_bf = 0;
	}

	//右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);
		if (bf == -1)
		{
			subR->_bf = 1;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		
	}

	//左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		RotateL(subL);
		RotateR(parent);
		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
	}



	//
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		return abs(leftHeight - rightHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

	bool IsBalance()
	{
		return _IsBalance(_root);
	}
private:
	Node* _root = nullptr;
};


void TestAVLTree()
{

	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}

	t.InOrder();
	cout << t.IsBalance() << endl;
}

总结

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

下面是我对关于左旋右旋,左右双旋的简单记忆方法:

左旋:找父亲右结点,再从右节点找右左结点
右旋:找父亲左结点,再从左结点找左右结点

右左双旋:先找右结点,通过右找右左结点 ,设定这个结点的bf
if(bf==-1) subR->_bf=1;
else if(bf==1) parent->_bf=-1;

左右双旋:先找左结点,通过左找左右结点 ,设定这个结点的bf
if(bf==-1) parent->_bf=1;
else if(bf==-1) subL->_bf=-1;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 平衡二叉搜索树(Balanced Binary Search Tree)是一种特殊的二叉搜索树,它具有以下特点: 1. 每个节点的左子树和右子树的高度差不超过 1。 2. 每个节点都有一个平衡因子,它是左子树的高度减去右子树的高度。平衡因子的值只能是-1、0、1。 下面是一个简单的平衡二叉搜索树的例子: ``` 4 / \ 2 5 / \ \ 1 3 6 ``` 这棵平衡二叉搜索树满足以下条件: - 对于每个节点,它的左子树和右子树的高度差都不超过 1。 - 对于节点 4,它的平衡因子是 0。对于节点 2,它的平衡因子是 -1。对于节点 5,它的平衡因子是 1。 平衡二叉搜索树的优点在于,它能够保证插入、删除和查找操作的时间复杂度都是 O(logn),这使得它在处理大量数据时能够保证较快的速度。常见的平衡二叉搜索树AVL树、红黑树和Treap。 ### 回答2: 平衡二叉搜索树AVL树)是一种自平衡二叉搜索树,它的左右子树的高度差不超过1。下面是一个实现平衡二叉搜索树的例子: 1. 首先,定义节点类。节点类包含一个键和对应的值,以及左右子树的指针。 ``` class Node: def __init__(self, key, value): self.key = key self.value = value self.left = None self.right = None self.height = 1 ``` 2. 创建平衡二叉搜索树类,包含插入、删除和查找等方法。在树中插入节点时,需要保持平衡。 ``` class AVLTree: def __init__(self): self.root = None # 获取节点的高度 def get_height(self, node): if node is None: return 0 return node.height # 更新节点的高度 def update_height(self, node): node.height = 1 + max(self.get_height(node.left), self.get_height(node.right)) # 获取节点的平衡因子 def get_balance_factor(self, node): if node is None: return 0 return self.get_height(node.left) - self.get_height(node.right) # 向树中插入节点 def insert(self, key, value): self.root = self._insert(self.root, key, value) # 插入节点的辅助函数 def _insert(self, node, key, value): if node is None: return Node(key, value) if key < node.key: node.left = self._insert(node.left, key, value) else: node.right = self._insert(node.right, key, value) # 更新节点的高度 self.update_height(node) # 平衡树 balance_factor = self.get_balance_factor(node) if balance_factor > 1: if key < node.left.key: node = self._rotate_right(node) # LL型 else: node.left = self._rotate_left(node.left) # LR型 node = self._rotate_right(node) elif balance_factor < -1: if key > node.right.key: node = self._rotate_left(node) # RR型 else: node.right = self._rotate_right(node.right) # RL型 node = self._rotate_left(node) return node # 左旋转 def _rotate_left(self, node): new_root = node.right node.right = new_root.left new_root.left = node # 更新旋转后节点的高度 self.update_height(node) self.update_height(new_root) return new_root # 右旋转 def _rotate_right(self, node): new_root = node.left node.left = new_root.right new_root.right = node # 更新旋转后节点的高度 self.update_height(node) self.update_height(new_root) return new_root ``` 这样,我们就可以使用AVLTree类来创建并操作平衡二叉搜索树了。当插入或删除一个节点时,我们会根据节点的键值进行比较,并保持树的平衡性。这样可以提高搜索效率,并确保树的高度始终保持平衡。 ### 回答3: 平衡二叉搜索树(Balanced Binary Search Tree)是一种特殊的二叉搜索树,它的左右子树的高度差始终在一个固定的范围内,以确保树的平衡性和高效性。 构建平衡二叉搜索树的常用方法是AVL树。AVL树是一种自平衡二叉搜索树,其平衡因子(左右子树高度之差)满足平衡条件。 具体构建过程如下: 1. 首先,构建一个空树作为起始状态。 2. 从待插入节点集合中选择一个节点作为根节点。 3. 将根节点插入空树,并根据树的特点进行平衡操作。 4. 从待插入节点中选择一个节点,将其插入树中。 5. 检查树的平衡状态,如果不平衡,则进行相应的旋转操作恢复平衡。 6. 重复步骤4和5,直到所有节点均被插入树中。 7. 完成后,平衡二叉搜索树构建完成。 在插入节点时,根据具体情况进行左旋、右旋、左右旋或右左旋等操作,以保持树的平衡。旋转操作会调整节点的位置以及子树的链接关系,使树保持平衡性。 通过AVL树的构建,可以保证树的高度始终在一个较小的范围内,从而提高搜索、插入和删除等操作的效率。 总之,构建平衡二叉搜索树的过程就是不断插入节点并进行平衡操作的过程。通过合适的旋转操作,保证树的平衡性,从而提高树的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值