目录
1.平衡二叉搜索树(AVL树)的定义
上篇提到当插入的数据有序或接近有序时,节点n个的树的高度接近n,查找效率会接近O(n),效率较低,为此在每个节点引入了平衡因子,表示右子树与左子树的高度差,为让树接近完全二叉树,从而让查找效率为O(logn),可以约束左右子树的高度差不超过1,为做到需要通过旋转操作来实现,为便于旋转操作,在每个节点再引入一个父节点的指针,便于旋转。
于是可以定义树的节点如下:
template<class T>
struct AVLTreeNode
{
AVLTreeNode<T>* _left;
AVLTreeNode<T>* _right;
AVLTreeNode<T>* _parent;
T _data;
int _bf;//balance factor = 右子树高度 - 左子树高度
AVLTreeNode(const T& data = T())
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
,_bf(0)//新增节点的子树高度差为0
{}
};
再定义树的结构如下:
template<class T>
class AVLTree
{
typedef AVLTreeNode<T> Node;
public:
AVLTree()
:_root(nullptr)
{}
private:
Node* _root;
};
2.AVL树是如何平衡的?
AVL树可通过控制 -1<=_bf<=1来控制左右子树高度差小于2,可从插入操作来理解平衡规则。首先按二叉搜索树插入的方式进行插入,如然后再更新对应的平衡因子,当平衡因子不满足规则时,通过旋转操作来调整平衡因子,直到节点都满足平衡规则。
可以实现insert框架如下:
bool insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
return true;
}
Node* cur = root;
Node* parent = nullptr;
while (cur)
{
if (cur->_data == data)
return false;
parent = cur;
if (cur->_data < data)
cur = cur->_right;
else
cur = cur->_left;
}
cur = new Node(data);
if (parent->_data < data)
parent->_right = cur;
else
parent->_left = cur;
cur->_parent = parent;
//从下往上调整平衡因子
while (parent)
{
if (parent->_left == cur)
--parent->_bf;
else
++parent->_bf;
int bf = parent->_bf;
if (bf == 0)//parent为根的树高度不变
break;
if (bf == 1 || bf == -1)//0 变成 -1或1,parent为根的树高度变高了,往上继续调整
{
cur = parent;
parent = parent->_parent;
}
else if (bf == 2 || bf == -2)//平衡因子为2不满足规则,通过旋转调整
{
//...
}
else assert(false);//检查平衡因子
}
return true;
}
当平衡因子为-2或2时,如果parent的平衡因子为-2,cur的平衡因子应当由-1或1,否则parent的平衡因子不会更新到2,于是可分成四种情况来考虑:
画出各种情况的抽象图如下:
左旋操作
情况(1):parent的平衡因子为2,cur的平衡因子为1
左旋:将cur的左子树作为parent的右子树,将parent作为cur的左子树。
于是可以实现左旋操作代码:
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* grandparent = parent->_parent;
parent->_right = subRL;
if (subRL)subRL->_parent = parent;
subR->_left = parent;
parent->_parent = subR;
if (grandparent)
{
if (grandparent->_left == parent)
grandparent->_left = subR;
else
grandparent->_right = subR;
}
else
{
_root = subR;
}
subR->_parent = grandparent;
subR->_bf = parent->_bf = 0;
}
右旋操作
情况(2):parent的平衡因子为-2,cur的平衡因子为-1
右旋:将cur的右子树作为parent的左子树,将parent作为cur的右子树。
于是可以实现右旋操作代码(与左旋相似):
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* grandparent = parent->_parent;
parent->_left = subLR;
if (subLR)subLR->_parent = parent;
subL->_right = parent;
parent->_parent = subL;
if (grandparent)
{
if (grandparent->_left == parent)
grandparent->_left = subL;
else
grandparent->_right = subL;
}
else
{
_root = subL;
}
subL->_parent = grandparent;
subL->_bf = parent->_bf = 0;
}
左右双旋操作
情况(3):parent的平衡因子为-2,cur的平衡因子为1
此时插入subLR子树有三种情况(它们是类似的,假设往subLR的左子树插入):
另外两种情况同理(两次旋转的操作相同):
可以复用之前旋转的代码,于是可以实现下面的代码:
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(subL);
RotateR(parent);
if (bf == 0)
{
parent->_bf = 0;
subL->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = 0;
subLR->_bf = -1;
subL->_bf = -1;
}
else
{
parent->_bf = 1;
subLR->_bf = 1;
subL->_bf = 0;
}
}
右左双旋操作
情况(4):parent的平衡因子为2,cur的平衡因子为-1
这个情况与情况三相反,先将subR为根的树向右旋转,再将parent为根的树向左旋转即可。
代码类似上:
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(subR);
RotateL(parent);
if (bf == 0)
{
parent->_bf = 0;
subR->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
subRL->_bf = -1;
parent->_bf - 1;
}
else
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 1;
}
}
测试平衡树:
检查每个节点的平衡因子是否正确(bf = height(node->right) - height(node->left) ),然后检查是否大于1或小于-1,即是否违反平衡树的规则。(出错时,层序遍历输出树,方便检查)
代码:
public:
int height() { return _height(_root); }
bool isAVLTree() { return _isAVLTree(_root); }
vector<vector<int>> levelOrder() { return _levelOrder(_root); }
private:
vector<vector<int>> _levelOrder(Node* root)
{
vector<vector<int>>ret(0);
if (root == nullptr)
return ret;
queue<Node*> q;
q.push(root);
int level = 0;
while (q.size())
{
int n = q.size();
ret.push_back(vector<int>{});
while (n--)
{
if (q.front()->_left)
q.push(q.front()->_left);
if (q.front()->_right)
q.push(q.front()->_right);
ret[level].push_back(q.front()->_data);
q.pop();
}
++level;
}
for (auto &v : ret)
{
for (auto e : v)
cout << e << " ";
cout << endl;
}
return ret;
}
bool _isAVLTree(Node* root)
{
if (root == nullptr)
return true;
int bf = root->_bf;
if (bf != _height(root->_right) - _height(root->_left))
{
cout << "balance factor isn't correct! " << endl;
cout << "Node val = " << root->_data<<" node->bf = "<<root->_bf << endl;
return false;
}
else if (abs(bf) > 1)
{
cout << "abs(bf) means imbalance! " << endl;
cout << "Node val = " << root->_data << " node->bf = " << root->_bf<<endl;
return false;
}
return _isAVLTree(root->_left) && _isAVLTree(root->_right);
}
int _height(Node* root)
{
if (root == nullptr)
return 0;
return std::max(_height(root->_left), _height(root->_right)) + 1;
}
测试代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<vector>
#include<string>
using std::cout;
using std::cin;
using std::endl;
#define N 5000
#include"avltree.h"
int main()
{
srand(time(nullptr));
AVLTree<int> avlt;
//while(avlt.IsBalance())
for (int i = 0; i < N; i++)
{
avlt.insert(rand());
if (avlt.isAVLTree() == false)
{
avlt.InOrder();
break;
}
if (i % 500 == 0)
cout <<"now avlTree height = " << avlt.height() << endl;
}
return 0;
}
输出结果:正常