前言
还记得上个内容哈希留下的问题嘛?
这里我将总结位图知识,并且解决问题!
一、位图是什么?
位图就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。
二、问题
1.问题分析
面试题:
给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
1.遍历,时间复杂度O(N)
2.排序(O(NlogN)),利用二分查找: logN
3.位图解决
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。
2.代码实现位图
代码如下(示例):
#pragma once
#include <vector>
namespace bit
{
class bitset
{
public:
bitset(size_t N)
{
_bits.resize(N/32+1, 0); // 注意这里,加一的必要
_num = 0;
}
void set(size_t x)
{
size_t index = x / 32; // 算出映射的位置在第几个整形
size_t pos = x % 32; // 算出x在整形的第几个位
_bits[index] |= (1 << pos); // 第pos个位置成1
++_num;
}
void reset(size_t x)
{
size_t index = x / 32; // 算出映射的位置在第几个整形
size_t pos = x % 32; // 算出x在整形的第几个位
_bits[index] &= ~(1 << pos); // 第pos个位置成0
--_num;
}
// 判断x在不在(也就是说x映射的位知否为1)
bool test(size_t x)
{
size_t index = x / 32; // 算出映射的位置在第几个整形
size_t pos = x % 32; // 算出x在整形的第几个位
return _bits[index] & (1 << pos);
}
private:
//int* _bits;
std::vector<int> _bits;
size_t _num; // 映射存储的多少个数据
};
void test_bitset()
{
/*bitset bs(100);
bs.set(99);
bs.set(98);
bs.set(97);
bs.set(5);
bs.reset(98);
for (size_t i = 0; i < 100; ++i)
{
printf("[%d]:%d\n", i, bs.test(i));
}*/
bitset bs(-1);
//bitset bs(pow());
//bitset bs(0xffffffff);
}
}
三、位图的应用
- 快速查找某个数据是否在一个集合中
- 排序
- 求两个集合的交集、并集等
- 操作系统中磁盘块标记
总结
位图可以解决海量数据的问题。节省空间,效率高。
但是缺点是只能处理整形。